2 resultados para Foot Measurement Evaluation

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is little agreement as to the most appropriate thermometer, the anatomical site to carry out temperature measurement in children with cancer, or the type of thermometer preferred by the patients. The authors carried out this study to assess temperature measurement in children with cancer who were admitted for febrile episodes. The body temperatures of children with cancer who were admitted consecutively between January and October 2005 to the paediatric department because of febrile episodes were measured on admission and over the next 24–36 hours using an electronic thermometer sublingually as the standard reference site. These measurements were compared with those obtained with two ear-based thermometers, a forehead thermometer, and from the axilla (representing current practice). The parents were asked about the type of thermometer they used at home and the children were asked about the type of thermometer they preferred. There were 34 admissions during this period, of which 19 (56%) were confirmed as febrile. Altogether, 108 sets of temperature measurements were obtained, producing a total of 540 measurements from these admissions. Measurements with the two ear-based thermometers in febrile children achieved higher sensitivity than that with axillary and the forehead measurements. The ear-based thermometer was the most common type used at home while the forehead thermometer was the one preferred by the children. In conclusion, ear-based temperature measurements in febrile children were more accurate than axillary and forehead temperature measurements. The current practice of axillary temperature measurement needs to be re-considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental studies of cross correlation techniques applied to non-restrictive velocity measurement of pneumatically conveyed solids using ring-shaped electrodynamic flow sensors are presented. In-depth studies of the electrodynamic sensing mechanism, and also of the spatial sensitivity and spatial filtering properties of the sensor are included, together with their relationships to measurement accuracy and the effects of solids' velocity profiles. The experimental evaluation of a 53 mm bore sensing head is described, including trials using a calibrated pneumatic conveyor circulating pulverized fuel and cement. Comparisons of test results with the mathematical models of the sensor are used to identify important aspects of the instrument design. Off-line test results obtained using gravity-fed solids flow show that the system repeatability is within +/-0.5% over the velocity range of 2-4 m s(-1) for volumetric concentrations of solids no greater than 0.2%. Results obtained in the pilot-plant trials demonstrate that the system is capable of achieving repeatability better than +/-2% and linearity within +/-2% over the velocity range 20-40 m s(-1) for volumetric concentrations of solids in the range 0.01-0.44%.