10 resultados para Flutter (Aerodynamics)
em Greenwich Academic Literature Archive - UK
Resumo:
Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.
Resumo:
Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.
Resumo:
The classical Purcell's vector method, for the construction of solutions to dense systems of linear equations is extended to a flexible orthogonalisation procedure. Some properties are revealed of the orthogonalisation procedure in relation to the classical Gauss-Jordan elimination with or without pivoting. Additional properties that are not shared by the classical Gauss-Jordan elimination are exploited. Further properties related to distributed computing are discussed with applications to panel element equations in subsonic compressible aerodynamics. Using an orthogonalisation procedure within panel methods enables a functional decomposition of the sequential panel methods and leads to a two-level parallelism.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. Numerical modelling of dynamic fluid-structure interaction (DFSI) involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge and until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. A single, finite volume unstructured mesh (FV-UM) spatial discretisation method has been employed on a single mesh for the entire domain. The Navier Stokes equations for fluid flow are solved using a SIMPLE type procedure and the Newmark b algorithm is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics and mesh movement is achieved using a spring based mesh procedure for dynamic mesh movement. In the paper we describe a number of additional computation issues for the efficient and accurate modelling of three-dimensional, dynamic fluid-structure interaction problems.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, flow in elastic pipes and blood vessels and extrusion of metals through dies. However a comprehensive computational model of these multi-physics phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply even to the extent in metal forming, for example, that the deformation of the die is totally ignored. More recently, strategies for solving the full coupling between the fluid and soild mechanics behaviour have developed. Conventionally, the computational modelling of fluid structure interaction is problematical since computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. In the past the concurrent, but rather disparate, development paths for the finite element and finite volume methods have resulted in numerical software tools for CFD and CSM that are different in almost every respect. Hence, progress is frustrated in modelling the emerging multi-physics problem of fluid structure interaction in a consistent manner. Unless the fluid-structure coupling is either one way, very weak or both, transferring and filtering data from one mesh and solution procedure to another may lead to significant problems in computational convergence. Using a novel three phase technique the full interaction between the fluid and the dynamic structural response are represented. The procedure is demonstrated on some challenging applications in complex three dimensional geometries involving aircraft flutter, metal forming and blood flow in arteries.
Resumo:
A two dimensional staggered unstructured discretisation scheme for the solution of fluid flow problems has been developed. This scheme stores and solves the velocity vector resolutes normal and parallel to each cell face and other scalar variables (pressure, temperature) are stored at cell centres. The coupled momentum; continuity and energy equations are solved, using the well known pressure correction algorithm SIMPLE. The method is tested for accuracy and convergence behaviour against standard cell-centre solutions in a number of benchmark problems: The Lid-Driven Cavity, Natural Convection in a Cavity and the Melting of Gallium in a rectangular domain.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
General-purpose parallel processing for solving day-to-day industrial problems has been slow to develop, partly because of the lack of suitable hardware from well-established, mainstream computer manufacturers and suitably parallelized application software. The parallelization of a CFD-(computational fluid dynamics) flow solution code is known as ESAUNA. This code is part of SAUNA, a large CFD suite aimed at computing the flow around very complex aircraft configurations including complete aircraft. A novel feature of the SAUNA suite is that it is designed to use either block-structured hexahedral grids, unstructured tetrahedral grids, or a hybrid combination of both grid types. ESAUNA is designed to solve the Euler equations or the Navier-Stokes equations, the latter in conjunction with various turbulence models. Two fundamental parallelization concepts are used—namely, grid partitioning and encapsulation of communications. Grid partitioning is applied to both block-structured grid modules and unstructured grid modules. ESAUNA can also be coupled with other simulation codes for multidisciplinary computations such as flow simulations around an aircraft coupled with flutter prediction for transient flight simulations.