12 resultados para Fire control (Naval gunnery)
em Greenwich Academic Literature Archive - UK
Resumo:
SMARTFIRE is a fire field model based on an open architecture integrated CFD code and knowledge-based system. It makes use of the expert system to assist the user in setting up the problem specification and new computational techniques such as Group Solvers to reduce the computational effort involved in solving the equations. This paper concentrates on recent research into the use of artificial intelligence techniques to assist in dynamic solution control of fire scenarios being simulated using fire field modelling techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxations using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate enhanced solution reliability due to obtaining acceptable convergence within each time step unlike some of the comparison simulations.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire sas well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritmeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.
Resumo:
Evacuation analysis of passenger and commercial shipping can be undertaken using computer-based simulation tools such as maritimeEXODUS. These tools emulate human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. If these tools and procedures are to be applied to naval vessels there is a clear requirement to understand the behaviour of well-trained naval personnel interacting with the fixtures and fittings that are exclusive to warships. Human factor trials using Royal Navy training facilities were recently undertaken to collect data to improve our understanding of the performance of naval personnel in warship environments. The trials were designed and conducted by staff from the Fire Safety Engineering Group (FSEG) of the University of Greenwich on behalf of the Sea Technology Group (STG), Defence Procurement Agency. The trials involved a selection of RN volunteers with sea-going experience in warships, operating and traversing structural components under different angles of heel. This paper describes the trials and some of the collected data.
Resumo:
A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.
Resumo:
Once the preserve of university academics and research laboratories with high-powered and expensive computers, the power of sophisticated mathematical fire models has now arrived on the desk top of the fire safety engineer. It is a revolution made possible by parallel advances in PC technology and fire modelling software. But while the tools have proliferated, there has not been a corresponding transfer of knowledge and understanding of the discipline from expert to general user. It is a serious shortfall of which the lack of suitable engineering courses dealing with the subject is symptomatic, if not the cause. The computational vehicles to run the models and an understanding of fire dynamics are not enough to exploit these sophisticated tools. Too often, they become 'black boxes' producing magic answers in exciting three-dimensional colour graphics and client-satisfying 'virtual reality' imagery. As well as a fundamental understanding of the physics and chemistry of fire, the fire safety engineer must have at least a rudimentary understanding of the theoretical basis supporting fire models to appreciate their limitations and capabilities. The five day short course, "Principles and Practice of Fire Modelling" run by the University of Greenwich attempt to bridge the divide between the expert and the general user, providing them with the expertise they need to understand the results of mathematical fire modelling. The course and associated text book, "Mathematical Modelling of Fire Phenomena" are aimed at students and professionals with a wide and varied background, they offer a friendly guide through the unfamiliar terrain of mathematical modelling. These concepts and techniques are introduced and demonstrated in seminars. Those attending also gain experience in using the methods during "hands-on" tutorial and workshop sessions. On completion of this short course, those participating should: - be familiar with the concept of zone and field modelling; - be familiar with zone and field model assumptions; - have an understanding of the capabilities and limitations of modelling software packages for zone and field modelling; - be able to select and use the most appropriate mathematical software and demonstrate their use in compartment fire applications; and - be able to interpret model predictions. The result is that the fire safety engineer is empowered to realise the full value of mathematical models to help in the prediction of fire development, and to determine the consequences of fire under a variety of conditions. This in turn enables him or her to design and implement safety measures which can potentially control, or at the very least reduce the impact of fire.
Resumo:
This paper describes two new techniques designed to enhance the performance of fire field modelling software. The two techniques are "group solvers" and automated dynamic control of the solution process, both of which are currently under development within the SMARTFIRE Computational Fluid Dynamics environment. The "group solver" is a derivation of common solver techniques used to obtain numerical solutions to the algebraic equations associated with fire field modelling. The purpose of "group solvers" is to reduce the computational overheads associated with traditional numerical solvers typically used in fire field modelling applications. In an example, discussed in this paper, the group solver is shown to provide a 37% saving in computational time compared with a traditional solver. The second technique is the automated dynamic control of the solution process, which is achieved through the use of artificial intelligence techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxation using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate the potential for enhanced solution reliability due to obtaining acceptable convergence within each time step, unlike some of the comparison simulations.
Resumo:
When designing a new passenger ship or naval vessel or modifying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models are now recognised by IMO through the publication of the Interim Guidelines for Evacuation Analysis of New and Existing Passenger Ships including Ro-Ro. This approach offers the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board" as well as reviewing and optimising the evacuation provision of the existing fleet. Other applications of this technology include the optimisation of operating procedures for civil and naval vessels such as determining the optimal location of a feature such as a casino, organising major passenger movement events such as boarding/disembarkation or restaurant/theatre changes, determining lean manning requirements, location and number of damage control parties, etc. This paper describes the development of the maritimeEXODUS evacuation model which is fully compliant with IMO requirements and briefly presents an example application to a large passenger ferry.