55 resultados para Fire alarms

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process and aircraft fire have a role to play in the design and development of safer aircraft, in the implementaion of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost and risk involved in performing large-scale fire/evacuation experiments for the next generation 'Very Large Aircraft' (VLA) are expected to be high, the development and use of these modelling tools may become essential if these aircraft are to prove a viable reality. By describing the present capabililties and limitations of the EXODUS evacuation model and associated fire models, this paper will examine the future development and data requirements of these models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modelling and represents an extension of this technique to situations involving the combustion of solid cellulosic hels A simple solid &el combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddydissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment The model is shown to be able to qualitatively predict behaviours similar to flashover - in the case of the open room - and backdrafl - in the case of the initially closed room.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a project aimed at making Computational Fluid Dynamics (CFD) based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practise of CFD based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modelling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasising its open architecture, CFD engine and knowledge based systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a project aimed at making Computational Fluid Dynamics (CFD)- based fire simulation accessible to members of the fire safety engineering community. Over the past few years, the practice of CFD-based fire simulation has begun the transition from the confines of the research laboratory to the desk of the fire safety engineer. To a certain extent, this move has been driven by the demands of performance based building codes. However, while CFD modeling has many benefits over other forms of fire simulation, it requires a great deal of expertise on the user’s part to obtain reasonable simulation results. The project described in this paper, SMARTFIRE, aims to relieve some of this dependence on expertise so that users are less concerned with the details of CFD analysis and can concentrate on results. This aim is achieved by the use of an expert system component as part of the software suite which takes some of the expertise burden away from the user. SMARTFIRE also makes use of the latest developments in CFD technology in order to make the CFD analysis more efficient. This paper describes design considerations of the SMARTFIRE software, emphasizing its open architecture, CFD engine and knowledge-based systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pyrolysis model for noncharring solid fuels is presented in this paper. Model predictions are compared with experimental data for the mass loss rates of polymethylmethacrylate (PMMA) and very good agreement is achieved. Using a three-dimensional CFD environment, the pyrolysis model is then coupled with a gas-phase combustion model and a thermal radiation model to simulate fire development within a small compartment. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic post-flashover linear correlation with constant of proportionality 0.38 kg/sm5=2. The simulation results also suggest that the model is capable of predicting the onset of "flashover" and "post-flashover" type behaviour within the fire compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SMARTFIRE is a fire field model based on an open architecture integrated CFD code and knowledge-based system. It makes use of the expert system to assist the user in setting up the problem specification and new computational techniques such as Group Solvers to reduce the computational effort involved in solving the equations. This paper concentrates on recent research into the use of artificial intelligence techniques to assist in dynamic solution control of fire scenarios being simulated using fire field modelling techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxations using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate enhanced solution reliability due to obtaining acceptable convergence within each time step unlike some of the comparison simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.