13 resultados para Finite Linear Sub-Variety
em Greenwich Academic Literature Archive - UK
Resumo:
A vertex-based finite volume (FV) method is presented for the computational solution of quasi-static solid mechanics problems involving material non-linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two- and threedimensional element types. A detailed comparison between the vertex-based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted.
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components
Resumo:
In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.
Resumo:
We extend the Harris regularity condition for ordinary Markov branching process to a more general case of non-linear Markov branching process. A regularity criterion which is very easy to check is obtained. In particular, we prove that a super-linear Markov branching process is regular if and only if the per capita offspring mean is less than or equal to I while a sub-linear Markov branching process is regular if the per capita offspring mean is finite. The Harris regularity condition then becomes a special case of our criterion.
Resumo:
This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components.
Resumo:
A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.
Resumo:
Semi-Lagrangian finite volume schemes for the numerical approximation of linear advection equations are presented. These schemes are constructed so that the conservation properties are preserved by the numerical approximation. This is achieved using an interpolation procedure based on area-weighting. Numerical results are presented illustrating some of the features of these schemes.
Resumo:
The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.
Resumo:
This paper presents the computational modelling of welding phenomena within a versatile numerical framework. The framework embraces models from both the fields of computational fluid dynamics (CFD) and computational solid mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat transfer and phase change, cell-centred finite volume (FV) methods are employed. Additionally, novel vertex-based FV methods are employed with regard to the elasto-plastic deformation associated with the CSM. The FV methods are included within an integrated modelling framework, PHYSICA, which can be readily applied to unstructured meshes. The modelling techniques are validated against a variety of reference solutions.
Resumo:
In recognition of the differences of scale between the welding pool and the heat affected zone along the welding line on one hand, and the overall size of the components being welded on the other, a local-global finite element approach was developed for the evaluation of distortions in laser welded shipbuilding parts. The approach involves the tandem use of a 'local' and a 'global' step. The local step involves a three-dimensional finite element model for the simulation of the laser welding process using the Sysweld finite element code, which takes into account thermal, metallurgical, and mechanical aspects. The simulation of the laser welding process was performed using a non-linear heat transfer analysis, based on a keyhole formation model, and a coupled transient thermomechanical analysis, which takes into account metallurgical transformations using the temperature dependent material properties and the continuous cooling transformation diagram. The size and shape of the keyhole used in the local finite element analysis was evaluated using a keyhole formation model and the Physica finite volume code. The global step involves the transfer of residual plastic strains and the stiffness of the weld obtained from the local model to the global analysis, which then provides the predicted distortions for the whole part. This newly developed methodology was applied to the evaluation of global distortions due to laser welding of stiffeners on a shipbuilding part. The approach has been proved reliable in comparison with experiments and of practical industrial use in terms of computing time and storage.
Resumo:
CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.
Resumo:
Recently, there has been considerable interest in solving viscoelastic problems in 3D particularly with the improvement in modern computing power. In many applications the emphasis has been on economical algorithms which can cope with the extra complexity that the third dimension brings. Storage and computer time are of the essence. The advantage of the finite volume formulation is that a large amount of memory space is not required. Iterative methods rather than direct methods can be used to solve the resulting linear systems efficiently.