4 resultados para Field concept

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced-scale and full-scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.