8 resultados para Few-body

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intriguing question, which until recently had not been directly explored by the courts, is the extent to which English law recognises body parts and products of the human body as property capable of ownership. Although the common law currently recognises no general property in a dead body (and only limited possessory rights in respect of it), this apparent “no-property rule” provides no justification, it is submitted, for denying proprietary status to parts or products of a living human body. The recent decision of the Court of Appeal in Yearworth v. North Bristol NHS Trust ([2009] EWCA Civ 37) lends strong support to the view that genetic material (as the product of a living human body) is capable of ownership, at least in the context of a claim in the tort of negligence and bailment. This article examines the various issues by reference to both English and Commonwealth authority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The values of material physical properties are vital for the successful use of numerical simulations for electromagnetic processing of materials. The surface tension of materials can be determined from the experimental measurement of the surface oscillation frequency of liquid droplets. In order for this technique to be used, a positioning field is required that results in a modification to the oscillation frequency. A number of previous analytical models have been developed that mainly focus on electrically conducting droplets positioned using an A.C. electromagnetic field, but due to the turbulent flow resulting from the high electromagnetic fields required to balance gravity, reliable measurements have largely been limited to microgravity. In this work axisymmetric analytical and numerical models are developed, which allow the surface tension of a diamagnetic droplet positioned in a high DC magnetic field to be determined from the surface oscillations. In the case of D.C. levitation there is no internal electric currents with resulting Joule heating, Marangoni flow and other effects that introduce additional physics that complicates the measurement process. The analytical solution uses the linearised Navier-Stokes equations in the inviscid case. The body force from a DC field is potential, in contrast to the AC case, and it can be derived from Maxwell equations giving a solution for the magnetic field in the form of a series expansion of Legendre polynomials. The first few terms in this expansion represent a constant and gradient magnetic field valid close to the origin, which can be used to position the droplet. Initially the mathematical model is verified in microgravity conditions using a numerical model developed to solve the transient electromagnetics, fluid flow and thermodynamic equations. In the numerical model (as in experiment) the magnetic field is obtained using electrical current carrying coils, which provides the confinement force for a liquid droplet. The model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the droplet and the non-uniform external magnetic field. A comparison is made between the analytical perturbation theory and the numerical pseudo spectral approximation solutions for small amplitude oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore the application of cooperative communications in ultra-wideband (UWB) wireless body area networks (BANs), where a group of on-body devices may collaborate together to communicate with other groups of on-body equipment. Firstly, time-domain UWB channel measurements are presented to characterize the body-centric multipath channel and to facilitate the diversity analysis in a cooperative BAN (CoBAN). We focus on the system deployment scenario when the human subject is in the sitting posture. Important channel parameters such as the pathloss, power variation, power delay profile (PDP), and effective received power (ERP) crosscorrelation are investigated and statistically analyzed. Provided with the model preliminaries, a detailed analysis on the diversity level in a CoBAN is provided. Specifically, an intuitive measure is proposed to quantify the diversity gains in a single-hop cooperative network, which is defined as the number of independent multipaths that can be averaged over to detect symbols. As this measure provides the largest number of redundant copies of transmitted information through the body-centric channel, it can be used as a benchmark to access the performance bound of various diversity-based cooperative schemes in futuristic body sensor systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The critical phase, in jumping events in track and field, appears to be between touchdown and take-off. Since obvious similarities exist between the take off phase in both long jump and pole vault, numerous 3D kinematics and electromyographic studies have only looked at long jump. Currently there are few detailed kinematics electromyographic data on the pole vault take-off phase. The aim of this study was therefore to characterise kinematics and electromyographic variables during the take-off phase to provide a better understanding of this phase in pole vaulting and its role in performance outcome. Material and methods: Six pole-vaulters took part in the study. Kinematics data were captured with retro reflective markers fixed on the body. Hip, knee and ankle angle were calculated. Differential bipolar surface electrodes were placed on the following muscles of the take-off leg: tibialis anterior, lateral gastrocnemius, vastus lateralis, rectus femoris, bicep femoris and gluteus maximus. EMG activity was synchronously acquired with the kinematic data. EMG data were rectified and smoothed using a second order low pass Butterworth Bidirectional filter (resulting in a 4th order filter) with a cut-off frequency of 14 Hz. Results: Evolution of hip, knee and ankle angle show no significant differences during the last step before touchdown, the take-off phase and the beginning of fly phase. Meanwhile, strong differences in EMG signal are noted inter and intra pole vaulter. However for a same subject the EMG activities seem to converge to some phase locked point. Discussion: All pole vaulters have approximately the same visible coordination This coordination reflects a different muscular control among pole vaulters but also for a considered pole vaulter. These phase locked point could be considered as invariant of motor control i.e. a prerequisite for a normal sequence of the movement and performance realization.