6 resultados para Feminist movement in Morocco

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1998, Swissair Flight I I I (SR111) developed an in-flight fire shortly after take-off which resulted in the loss of the aircraft, a McDonnell Douglas MD-I 1, and all passengers and crew. The Transportation Safety Board (TSB) of Canada, Fire and Explosion Group launched a four year investigation into the incident in an attempt to understand the cause and subsequent mechanisms which lead to the rapid spread of the in-flight fire. As part of this investigation, the SMARTFIRE Computational Fluid Dynamics (CFD) software was used to predict the 'possible' development of the fire and associated smoke movement. In this paper the CFD fire simulations are presented and model predictions compared with key findings from the investigation. The model predictions are shown to be consistent with a number of the investigation findings associated with the early stages of the fire development. The analysis makes use of simulated pre-fire airflow conditions within the MD-11 cockpit and above ceiling region presented in an earlier publication (Part 1) which was published in The Aeronautical Journal in January 2006(4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a CFD analysis constructed around PHYSICA, an open framework for multi-physics computational continuum mechanics modelling, to investigate the water movement in unsaturated porous media. The modelling environment is based on a cell-centred finite-volume discretisation technique. A number of test cases are performed in order to validate the correct implementation of Richard's equation for compressible and incompressible fluids. The pressure head form of the equation is used together with the constitutive relationships between pressure, volumetric water content and hydraulic conductivity described by Haverkamp and Van Genuchten models. The flow problems presented are associated with infiltration into initially dry soils with homogeneous or layered geologic settings. Comparison of results with the problems selected from literature shows a good agreement and validates the approach and the implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. Numerical modelling of dynamic fluid-structure interaction (DFSI) involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge and until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. A single, finite volume unstructured mesh (FV-UM) spatial discretisation method has been employed on a single mesh for the entire domain. The Navier Stokes equations for fluid flow are solved using a SIMPLE type procedure and the Newmark b algorithm is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics and mesh movement is achieved using a spring based mesh procedure for dynamic mesh movement. In the paper we describe a number of additional computation issues for the efficient and accurate modelling of three-dimensional, dynamic fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In The Eye of Power, Foucault delineated the key concerns surrounding hospital architecture in the latter half of the eighteenth century as being the ‘visibility of bodies, individuals and things'. As such, the ‘new form of hospital' that came to be developed ‘was at once the effect and support of a new type of gaze'. This was a gaze that was not simply concerned with ways of minimising overcrowding or cross-contamination. Rather, this was a surveillance intended to produce knowledge about the pathological bodies contained within the hospital walls. This would then allow for their appropriate classification. Foucault went on to describe how these principles came to be applied to the architecture of prisons. This was exemplified for him in the distinct shape of Bentham's panopticon. This circular design, which has subsequently become an often misused synonym for a contemporary culture of surveillance, was premised on a binary of the seen and the not-seen. An individual observer could stand at the central point of the circle and observe the cells (and their occupants) on the perimeter whilst themselves remaining unseen. The panopticon in its purest form was never constructed, yet it conveys the significance of the production of knowledge through observation that became central to institutional design at this time and modern thought more broadly. What is curious though is that whilst the aim of those late eighteenth century buildings was to produce wellventilated spaces suffused with light, this provoked an interest in its opposite. The gothic movement in literature that was developing in parallel conversely took a ‘fantasy world of stone walls, darkness, hideouts and dungeons…' as its landscape (Vidler, 1992: 162). Curiously, despite these modern developments in prison design, the façade took on these characteristics. The gothic imagination came to describe that unseen world that lay behind the outer wall. This is what Evans refers to as an architectural ‘hoax'. The façade was taken to represent the world within the prison walls and it was the façade that came to inform the popular imagination about what occurred behind it. The rational, modern principles ordering the prison became conflated with the meanings projected by and onto the façade. This confusion of meanings have then been repeated and reenforced in the subsequent representations of the prison. This is of paramount importance since it is the cinematic and televisual representation of the prison, as I argue here and elsewhere, that maintain this erroneous set of meanings, this ‘hoax'.