2 resultados para Fatty acid degradation

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.