4 resultados para Fast reactors

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes the design of an efficient and robust genetic algorithm for the nuclear fuel loading problem (i.e., refuellings: the in-core fuel management problem) - a complex combinatorial, multimodal optimisation., Evolutionary computation as performed by FUELGEN replaces heuristic search of the kind performed by the FUELCON expert system (CAI 12/4), to solve the same problem. In contrast to the traditional genetic algorithm which makes strong requirements on the representation used and its parameter setting in order to be efficient, the results of recent research results on new, robust genetic algorithms show that representations unsuitable for the traditional genetic algorithm can still be used to good effect with little parameter adjustment. The representation presented here is a simple symbolic one with no linkage attributes, making the genetic algorithm particularly easy to apply to fuel loading problems with differing core structures and assembly inventories. A nonlinear fitness function has been constructed to direct the search efficiently in the presence of the many local optima that result from the constraint on solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in $ \O({\rm T}_{\rm feas}(n) \times\log n)$ time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schraudolph proposed an excellent exponential approximation providing increased performance particularly suited to the logistic squashing function used within many neural networking applications. This note applies Intel's streaming SIMD Extensions 2 (SSE2), where SIMD is single instruction multiple data, of the Pentum IV class processor to Schraudolph's technique, further increasing the performance of the logistic squashing function. It was found that the calculation of the new 32-bit SSE2 logistic squashing function described here was up to 38 times faster than the conventional exponential function and up to 16 times faster than a Schraudolph-style 32-bit method on an Intel Pentum D 3.6 GHz CPU.