2 resultados para FLUORESCENCE CORRELATION SPECTROSCOPY
em Greenwich Academic Literature Archive - UK
Resumo:
Investigations of the vibrational spectra of cyclo(Gly-Gly), cyclo(L-Ala-L-Ala) and cyclo(t-Ala-Gly) are reported. Raman scattering and Fourier transform infrared (FTIR) spectra of solid-state and aqueous protonated samples, as well as their corresponding N-deuterated isotopomers, have been examined. In addition, density functional theory (DFT) (B3-LYP/cc-pVDZ) calculations of molecular structures and their associated vibrational modes were carried out. In each case, the calculated structures of lowest energy for the isolated gas-phase molecules have boat conformations. Assignments have been made for the observed Raman and FTIR vibrational bands of the cyclic di-amino acid peptides (CDAPs) examined. Raman polarization studies of aqueous phase samples are consistent with C-2 and C-1 symmetries for the six-membered rings of cyclo(L-Ala-L-Ala) and cydo(L-Ala-Gly), respectively. There is a good correlation between experimental and calculated vibrational bands for the three CDAPs. These data are in keeping with boat conformations for cydo(L-Ala-L-Ala) and cyclo(L-Ala-Gly) molecules, predicted by the ab initio calculations, in both the solid and aqueous solution states. However, Raman spectroscopic results might infer that cyclo(L-AlaGly) deviates only slightly from planarity in the solid state. The potential energy distributions of the amide I and II modes of a cis-peptide linkage are shown to be significantly different from those of the trans-peptides. For example, deuterium shifts have shown that the cis-amide I vibrations found in cyclo(Gly-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Ala-Gly) have larger N-H contributions compared to their trans-amide counterparts. Compared to trans-amide II vibrations, cis-amide II vibrations show a considerable decrease in N-H character.
Resumo:
The reaction of the five- or six-membered C,N or C,S-palladacycles [(L)PdCl](2) with PTA (1,3,5-triaza-7-phosphaadamantane) led to the monomeric complexes [(L)Pd(PTA)Cl] 6a, 6b and 7 where LH= N,N-dimethyl-1-phenylmethanamine, benzyl(methyl)sulfane or 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one respectively. Dimeric complexes have also been synthesised: [Pd(2)L(2)(mu-dppe)Cl(2)], where LH = 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1a), (R)- or (S)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1b, 1c), [Pd(2)L(2)(mu-dppf)Cl(2)], where L= 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4a) or (R)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4b), respectively, and dppe = 1,2-bis(diphenylphosphino)ethane, dppf = 1,1'-bis(diphenylphosphino)ferrocene. The complexes were characterised in solution, by (1)H and (31)P NMR spectroscopy, and single crystals of complexes 6b and 7 were studied in the solid state by X-ray crystallography. The palladacycles were evaluated for in vitro activity as cytotoxic agents on A2780/S cells and also as cathepsin B inhibitors, an enzyme implicated in a number of cancer related events.