2 resultados para FINITE STATE MACHINES
em Greenwich Academic Literature Archive - UK
Resumo:
We study information rates of time-varying flat-fading channels (FFC) modeled as finite-state Markov channels (FSMC). FSMCs have two main applications for FFCs: modeling channel error bursts and decoding at the receiver. Our main finding in the first application is that receiver observation noise can more adversely affect higher-order FSMCs than lower-order FSMCs, resulting in lower capacities. This is despite the fact that the underlying higher-order FFC and its corresponding FSMC are more predictable. Numerical analysis shows that at low to medium SNR conditions (SNR lsim 12 dB) and at medium to fast normalized fading rates (0.01 lsim fDT lsim 0.10), FSMC information rates are non-increasing functions of memory order. We conclude that BERs obtained by low-order FSMC modeling can provide optimistic results. To explain the capacity behavior, we present a methodology that enables analytical comparison of FSMC capacities with different memory orders. We establish sufficient conditions that predict higher/lower capacity of a reduced-order FSMC, compared to its original high-order FSMC counterpart. Finally, we investigate the achievable information rates in FSMC-based receivers for FFCs. We observe that high-order FSMC modeling at the receiver side results in a negligible information rate increase for normalized fading rates fDT lsim 0.01.
Resumo:
A communication system model for mutual information performance analysis of multiple-symbol differential M-phase shift keying over time-correlated, time-varying flat-fading communication channels is developed. This model is a finite-state Markov (FSM) equivalent channel representing the cascade of the differential encoder, FSM channel model and differential decoder. A state-space approach is used to model channel phase time correlations. The equivalent model falls in a class that facilitates the use of the forward backward algorithm, enabling the important information theoretic results to be evaluated. Using such a model, one is able to calculate mutual information for differential detection over time-varying fading channels with an essentially finite time set of correlations, including the Clarke fading channel. Using the equivalent channel, it is proved and corroborated by simulations that multiple-symbol differential detection preserves the channel information capacity when the observation interval approaches infinity.