34 resultados para FINITE SETS

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monotone scheme for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number is presented. The numerical stability is analysed with respect to the electromagnetic force. Standard central finite differences applied to finite volumes can only be numerically stable if the vector products involved in this force are computed with a scheme using a fully staggered grid. The electromagnetic quantities (electric currents and electric potential) must be shifted by half the grid size from the mechanical ones (velocity and pressure). An integral treatment of the boundary layers is used in conjunction with boundary conditions for electrically conducting walls. The simulations are performed with inhomogeneous electrical conductivities of the walls and reach high Hartmann numbers in three-dimensional simulations, even though a non-adaptive grid is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel three-dimensional finite volume (FV) procedure is described in detail for the analysis of geometrically nonlinear problems. The FV procedure is compared with the conventional finite element (FE) Galerkin approach. FV can be considered to be a particular case of the weighted residual method with a unit weighting function, where in the FE Galerkin method we use the shape function as weighting function. A Fortran code has been developed based on the finite volume cell vertex formulation. The formulation is tested on a number of geometrically nonlinear problems. In comparison with FE, the results reveal that FV can reach the FE results in a higher mesh density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface tension induced flow is implemented into a numerical modelling framework and validated for a number of test cases. Finite volume unstructured mesh techniques are used to discretize the mass, momentum and energy conservation equations in three dimensions. An explicit approach is used to include the effect of surface tension forces on the flow profile and final shape of a liquid domain. Validation of this approach is made against both analytical and experimental data. Finally, the method is used to model the wetting balance test for solder alloy material, where model predictions are used to gain a greater insight into this process. Copyright © 2000 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the results obtained from the parallelisation of some 3D industrial electromagnetic Finite Element codes within the ESPRIT Europort 2 project PARTEL are presented. The basic guidelines for the parallelisation procedure, based on the Bulk Synchronous Parallel approach, are presented and the encouraging results obtained in terms of speed-up on some selected test cases of practical design significance are outlined and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-Lagrangian finite volume schemes for the numerical approximation of linear advection equations are presented. These schemes are constructed so that the conservation properties are preserved by the numerical approximation. This is achieved using an interpolation procedure based on area-weighting. Numerical results are presented illustrating some of the features of these schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DRAMA library, developed within the European Commission funded (ESPRIT) project DRAMA, supports dynamic load-balancing for parallel (message-passing) mesh-based applications. The target applications are those with dynamic and solution-adaptive features. The focus within the DRAMA project was on finite element simulation codes for structural mechanics. An introduction to the DRAMA library will illustrate that the very general cost model and the interface designed specifically for application requirements provide simplified and effective access to a range of parallel partitioners. The main body of the paper will demonstrate the ability to provide dynamic load-balancing for parallel FEM problems that include: adaptive meshing, re-meshing, the need for multi-phase partitioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the computational modelling of welding phenomena within a versatile numerical framework. The framework embraces models from both the fields of computational fluid dynamics (CFD) and computational solid mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat transfer and phase change, cell-centred finite volume (FV) methods are employed. Additionally, novel vertex-based FV methods are employed with regard to the elasto-plastic deformation associated with the CSM. The FV methods are included within an integrated modelling framework, PHYSICA, which can be readily applied to unstructured meshes. The modelling techniques are validated against a variety of reference solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.