3 resultados para Expert Knowledge
em Greenwich Academic Literature Archive - UK
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.
Resumo:
This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.
Resumo:
Despite the apparent simplicity of the OpenMP directive shared memory programming model and the sophisticated dependence analysis and code generation capabilities of the ParaWise/CAPO tools, experience shows that a level of expertise is required to produce efficient parallel code. In a real world application the investigation of a single loop in a generated parallel code can soon become an in-depth inspection of numerous dependencies in many routines. The additional understanding of dependencies is also needed to effectively interpret the information provided and supply the required feedback. The ParaWise Expert Assistant has been developed to automate this investigation and present questions to the user about, and in the context of, their application code. In this paper, we demonstrate that knowledge of dependence information and OpenMP are no longer essential to produce efficient parallel code with the Expert Assistant. It is hoped that this will enable a far wider audience to use the tools and subsequently, exploit the benefits of large parallel systems.