3 resultados para Equations of Mathematical Physics
em Greenwich Academic Literature Archive - UK
Resumo:
Fire is a form of uncontrolled combustion which generates heat, smoke, toxic and irritant gases. All of these products are harmful to man and account for the heavy annual cost of 800 lives and £1,000,000,000 worth of property damage in Britain alone. The new discipline of Fire Safety Engineering has developed as a means of reducing these unacceptable losses. One of the main tools of Fire Safety Engineering is the mathematical model and over the past 15 years a number of mathematical models have emerged to cater for the needs of this discipline. Part of the difficulty faced by the Fire Safety Engineer is the selection of the most appropriate modelling tool to use for the job. To make an informed choice it is essential to have a good understanding of the various modelling approaches, their capabilities and limitations. In this paper some of the fundamental modelling tools used to predict fire and evacuation are investigated as are the issues associated with their use and recent developments in modelling technology.
Resumo:
Abstract not available
Resumo:
Once the preserve of university academics and research laboratories with high-powered and expensive computers, the power of sophisticated mathematical fire models has now arrived on the desk top of the fire safety engineer. It is a revolution made possible by parallel advances in PC technology and fire modelling software. But while the tools have proliferated, there has not been a corresponding transfer of knowledge and understanding of the discipline from expert to general user. It is a serious shortfall of which the lack of suitable engineering courses dealing with the subject is symptomatic, if not the cause. The computational vehicles to run the models and an understanding of fire dynamics are not enough to exploit these sophisticated tools. Too often, they become 'black boxes' producing magic answers in exciting three-dimensional colour graphics and client-satisfying 'virtual reality' imagery. As well as a fundamental understanding of the physics and chemistry of fire, the fire safety engineer must have at least a rudimentary understanding of the theoretical basis supporting fire models to appreciate their limitations and capabilities. The five day short course, "Principles and Practice of Fire Modelling" run by the University of Greenwich attempt to bridge the divide between the expert and the general user, providing them with the expertise they need to understand the results of mathematical fire modelling. The course and associated text book, "Mathematical Modelling of Fire Phenomena" are aimed at students and professionals with a wide and varied background, they offer a friendly guide through the unfamiliar terrain of mathematical modelling. These concepts and techniques are introduced and demonstrated in seminars. Those attending also gain experience in using the methods during "hands-on" tutorial and workshop sessions. On completion of this short course, those participating should: - be familiar with the concept of zone and field modelling; - be familiar with zone and field model assumptions; - have an understanding of the capabilities and limitations of modelling software packages for zone and field modelling; - be able to select and use the most appropriate mathematical software and demonstrate their use in compartment fire applications; and - be able to interpret model predictions. The result is that the fire safety engineer is empowered to realise the full value of mathematical models to help in the prediction of fire development, and to determine the consequences of fire under a variety of conditions. This in turn enables him or her to design and implement safety measures which can potentially control, or at the very least reduce the impact of fire.