4 resultados para Energy efficiency improvement measures

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A casting route is often the most cost-effective means of producing engineering components. However, certain materials, particularly those based on Ti, TiAl and Zr alloy systems, are very reactive in the molten condition and must be melted in special furnaces. Induction Skull Melting (ISM) is the most widely-used process for melting these alloys prior to casting components such as turbine blades, engine valves, turbocharger rotors and medical prostheses. A major research project is underway with the specific target of developing robust techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (UK) is developing a computer model of the ISM process in close collaboration with the University of Birmingham (UK) where extensive melting trials are being undertaken. This paper describes the experimental measurements to obtain data to feed into and to validate the model. These include measurements of the true RMS current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the column of semi-levitated molten metal. Data are presented for Al, Ni and TiAl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction Skull Melting (ISM) is used for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures when a minimum contact at solid walls is required. The numerical model presented here involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The often observed limiting temperature plateau for ever increasing electrical power input is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time dependent numerical model of cold crucible melting is based on the coupled electromagnetic, temperature and turbulent velocity field calculation accounting for the magnetically confined liquid metal shape continuous change. The model is applied to investigate the process energy efficiency dependence on the critical choice of AC power supply frequency and an optional addition of a DC magnetic field. Test cases of the metal load up to 50 kg are considered. The behaviour of the numerical model at high AC frequencies is instructively validated by the use of the electromagnetic analytical solution for a sphere and temperature measurements in a commercial size cold crucible furnace