4 resultados para Elements Constitutive
em Greenwich Academic Literature Archive - UK
Resumo:
Edge-element methods have proved very effective for 3-D electromagnetic computations and are widely used on unstructured meshes. However, the accuracy of standard edge elements can be criticised because of their low order. This paper analyses discrete dispersion relations together with numerical propagation accuracy to determine the effect of tetrahedral shape on the phase accuracy of standard 3-D edgeelement approximations in comparison to other methods. Scattering computations for the sphere obtained with edge elements are compared with results obtained with vertex elements, and a new formulation of the far-field integral approximations for use with edge elements is shown to give improved cross sections over conventional formulations.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
The Symposium, “Towards the sustainable use of Europe’s forests”, with sub-title “Forest ecosystem and landscape research: scientific challenges and opportunities” lists three fundamental substantive areas of research that are involved: Forest management and practices, Ecosystem processes and functional ecology, and Environmental economics and sociology. This paper argues that there are essential catalytic elements missing! Without these elements there is great danger that the aimed-for world leadership in the forest sciences will not materialize. What are the missing elements? All the sciences, and in particular biology, environmental sciences, sociology, economics, and forestry have evolved so that they include good scientific methodology. Good methodology is imperative in both the design and analysis of research studies, the management of research data, and in the interpretation of research finding. The methodological disciplines of Statistics, Modelling and Informatics (“SMI”) are crucial elements in a proposed Centre of European Forest Science, and the full involvement of professionals in these methodological disciplines is needed if the research of the Centre is to be world-class. Distributed Virtual Institute (DVI) for Statistics, Modelling and Informatics in Forestry and the Environment (SMIFE) is a consortium with the aim of providing world-class methodological support and collaboration to European research in the areas of Forestry and the Environment. It is suggested that DVI: SMIFE should be a formal partner in the proposed Centre for European Forest Science.
Resumo:
Solder constitutive models are important as they are widely used in FEA simulations to predict the lifetime of soldered assemblies. This paper briefly reviews some common constitutive laws to capture creep in solder and presents work on laws capturing both kinematic hardening and damage. Inverse analysis is used to determine constants for the kinematic hardening law which match experimental creep curves. The mesh dependence of the damage law is overcome by using volume averaging and is applied to predict the crack path in a thermal cycled resistor component