18 resultados para Electronics, Medical

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future of many companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Important questions for an engineer who is responsible for the quality of electronic parts such as printed circuit boards (PCBs) during design, production, assembly and after-sales support are: What is the impact of temperature? What is the impact of this temperature on the stress produced in the components? What is the electromagnetic compatibility (EMC) associated with such a design? At present, thermal, stress and EMC calculations are undertaken using different software tools that each require model build and meshing. This leads to a large investment in time, and hence cost, to undertake each of these simulations. This paper discusses the progression towards a fully integrated software environment, based on a common data model and user interface, having the capability to predict temperature, stress and EMC fields in a coupled manner. Such a modelling environment used early within the design stage of an electronic product will provide engineers with fast solutions to questions regarding thermal, stress and EMC issues. The paper concentrates on recent developments in creating such an integrated modeling environment with preliminary results from the analyses conducted. Further research into the thermal and stress related aspects of the paper is being conducted under a nationally funded project, while their application in reliability prediction will be addressed in a new European project called PROFIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future success of many electronics companies will depend to a large extent on their ability to initiate techniques that bring schedules, performance, tests, support, production, life-cycle-costs, reliability prediction and quality control into the earliest stages of the product creation process. Earlier papers have discussed the benefits of an integrated analysis environment for system-level thermal, stress and EMC prediction. This paper focuses on developments made to the stress analysis module and presents results obtained for an SMT resistor. Lifetime predictions are made using the Coffin-Manson equation. Comparison with the creep strain energy based models of Darveaux (1997) shows the shear strain based method to underestimate the solder joint life. Conclusions are also made about the capabilities of both approaches to predict the qualitative and quantitative impact of design changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-electronic displays are indispensible devices used in high performance applications such as aerospace, medical, marine and industrial sectors.These devices provide an interface to real time mission critical devices and therefore require good optical visual performance and high reliability, all this within varied and challenging environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – This paper aims to present an open-ended microwave curing system for microelectronics components and a numerical analysis framework for virtual testing and prototyping of the system, enabling design of physical prototypes to be optimized, expediting the development process. Design/methodology/approach – An open-ended microwave oven system able to enhance the cure process for thermosetting polymer materials utilised in microelectronics applications is presented. The system is designed to be mounted on a precision placement machine enabling curing of individual components on a circuit board. The design of the system allows the heating pattern and heating rate to be carefully controlled optimising cure rate and cure quality. A multi-physics analysis approach has been adopted to form a numerical model capable of capturing the complex coupling that exists between physical processes. Electromagnetic analysis has been performed using a Yee finite-difference time-domain scheme, while an unstructured finite volume method has been utilized to perform thermophysical analysis. The two solvers are coupled using a sampling-based cross-mapping algorithm. Findings – The numerical results obtained demonstrate that the numerical model is able to obtain solutions for distribution of temperature, rate of cure, degree of cure and thermally induced stresses within an idealised polymer load heated by the proposed microwave system. Research limitations/implications – The work is limited by the absence of experimentally derived material property data and comparative experimental results. However, the model demonstrates that the proposed microwave system would seem to be a feasible method of expediting the cure rate of polymer materials. Originality/value – The findings of this paper will help to provide an understanding of the behaviour of thermosetting polymer materials during microwave cure processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a dedicated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the process control of micro and nano-electronics based manufacturing processes is presented in this paper. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to help understand how a pre-defined geometry of micro- and nano- structures can be achieved using this technology. The process performance is characterised on the basis of developed Reduced Order Models (ROM) and are generated using results from a mathematical model of the Focused Ion Beam and Design of Experiment (DoE) methods. Two ion beam sources, Argon and Gallium ions, have been used to compare and quantify the process variable uncertainties that can be observed during the milling process. The evaluations of the process performance takes into account the uncertainties and variations of the process variables and are used to identify their impact on the reliability and quality of the fabricated structure. An optimisation based design task is to identify the optimal process conditions, by varying the process variables, so that certain quality objectives and requirements are achieved and imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the development of new advanced technologies in the area of micro and nano systems. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to provide knowledge of how a pre-defined geometry can be achieved through this direct milling. The geometry characterisation is obtained using a Reduced Order Models (ROM), generated from the results of a mathematical model of the Focused Ion Beam, and Design of Experiment (DoE) methods. In this work, the focus is on the design flow methodology which includes an approach on how to include process parameter uncertainties into the process optimisation modelling framework. A discussion on the impact of the process parameters, and their variations, on the quality and performance of the fabricated structure is also presented. The design task is to identify the optimal process conditions, by altering the process parameters, so that certain reliability and confidence of the application is achieved and the imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.