15 resultados para Electrical characterization of anisotropic conductive adhesive

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on the ACF joint. A 3-dimensional model of adhesively bonded flip chip assembly was built and simulations were performed for the 3-point bending test. The results show that the stress at its highest value at the corners, where the chip and ACF were connected together. The ACF thickness was increased at these corner regions. It was found that higher mechanical loading results in higher stress that causes a greater gap between the chip and the substrate at the corner position. Experimental work was also carried out to study the electrical reliability of the ACF joint with the applied bending load. As per the prediction from FEA, it was found that at first the corner joint failed. Successive open joints from the corner towards the middle were also noticed with the increase of the applied load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports the investigations into the moisture-induced failures in Flip-Chip-on-Flex interconnections with Anisotropic Conductive Films (ACFs). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, and 2atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours’ testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. For a better understanding of the experimental results, 3-D Finite Element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports an investigation into the moisture effects on the reliability of ACF interconnections in the flip-chip-on-flex (FCOF) applications. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. The purposes of this modeling work was to understand the role that moisture plays in the failure of ACF flip chips, and to look into the influence of physical properties and geometric characteristics, such as the coefficient of the moisture expansion (CME), Young's modulus of the adhesive matrix and the bump height on the reliability of the ACF interconnections in a humid environment. Simulation results suggest that moisture-induced swelling of the adhesive matrix is the major cause of the ACF joint opening. Modeling results are consistent with the findings in the experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic conductive films (ACFs) are widely used in the electronic packaging industries because of their fine pitch potential and the assembly process is simpler compared to the soldering process. However, there are still unsolved issues in the volume productions using ACFs. The main reason is that the effects of many factors on the interconnects are not well understood. This work focuses on the performance of ACF-bonded chip-on-flex assemblies subjected to a range of thermal cycling test conditions. Both experimental and three-dimensional finite element computer modelling methods are used. It has been revealed that greater temperature ranges and longer dwell-times give rise to higher stresses in the ACF interconnects. Higher stresses are concentrated along the edges of the chip-ACF interfaces. In the experiments, the results show that higher temperature ranges and prolonged dwell times increase contact resistance values. Close examination of the microstructures along the bond-line through the scanning electron microscope (SEM) indicates that cyclic thermal loads disjoint the conductive particles from the bump of the chip and/or pad of the substrate and this is thought to be related to the increase of the contact resistance value and the failure of the ACF joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using thermosetting epoxy based conductive adhesive films for the flip chip interconnect possess a great deal of attractions to the electronics manufacturing industries due to the ever increasing demands for miniaturized electronic products. Adhesive manufacturers have taken many attempts over the last decade to produce a number of types of adhesives and the coupled anisotropic conductive-nonconductive adhesive film is one of them. The successful formation of the flip chip interconnection using this particular type of adhesive depends on, among factors, how the physical properties of the adhesive changes during the bonding process. Experimental measurements of the temperature in the adhesive have revealed that the temperature becomes very close to the required maximum bonding temperature within the first 1s of the bonding time. The higher the bonding temperature the faster the ramp up of temperature is. A dynamic mechanical analysis (DMA) has been carried out to investigate the nature of the changes of the physical properties of the coupled anisotropic conductive-nonconductive adhesive film for a range of bonding parameters. Adhesive samples that are pre-cured at 170, 190 and 210°C for 3, 5 and 10s have been analyzed using a DMA instrument. The results have revealed that the glass transition temperature of this type of adhesive increases with the increase in the bonding time for the bonding temperatures that have been used in this work. For the curing time of 3 and 5s, the maximum glass transition temperature increases with the increase in the bonding temperature, but for the curing time of 10s the maximum glass transition temperature has been observed in the sample which is cured at 190°C. Based on these results it has been concluded that the optimal bonding temperature and time for this kind of adhesive are 190°C and 10s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stencil printing process is an important process in the assembly of Surface Mount Technology (SMT)devices. There is a wide agreement in the industry that the paste printing process accounts for the majority of assembly defects. Experience with this process has shown that typically over 60% of all soldering defects are due to problems associated with the flow properties of solder pastes. Therefore, the rheological measurements can be used as a tool to study the deformation or flow experienced by the pastes during the stencil printing process. This paper presents results on the thixotropic behaviour of three pastes; lead-based solder paste, lead-free solder paste and isotropic conductive adhesive (ICA). These materials are widely used as interconnect medium in the electronics industry. Solder paste are metal alloys suspended in a flux medium while the ICAs consist of silver flakes dispersed in an epoxy resin. The thixotropy behaviour was investigated through two rheological test; (i) hysteresis loop test and (ii) steady shear rate test. In the hysteresis loop test, the shear rate were increased from 0.001 to 100s-1 and then decreased from 100 to 0.001s-1. Meanwhile, in the steady shear rate test, the materials were subjected to a constant shear rate of 0.100, 100 and 0.001s-1 for a period of 240 seconds. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux or epoxy resin that prohibits pastes flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitates the flow of pastes, thus viscosity is reduced at high shear rate. The solder pastes exhibited a higher degree of structural breakdown compared to the ICAs. The area between the up curve and down curve in the hysteresis curve is an indication of the thixotropic behavior of the pastes. Among the three pastes, lead-free solder paste showed the largest area between the down curve and up curve, which indicating a larger structural breakdown in the pastes, followed by lead-based solder paste and ICA. In a steady shear rate test, viscosity of ICA showed the best recovery with the steeper curve to its original viscosity after the removal of shear, which indicating that the dispersion quality in ICA is good because the high shear has little effect on the microstructure of ICA. In contrast, lead-based paste showed the poorest recovery which means this paste undergo larger structural breakdown and dispersion quality in this paste is poor because the microstructure of the paste is easily disrupted by high shear. The structural breakdown during the application of shear and the recovery after removal of shear is an important characteristic in the paste printing process. If the paste’s viscosity can drop low enough, it may contribute to the aperture filling and quick recovery may prevent slumping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the investigations into the moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive films (ACF). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, 1atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours' testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. It is believed that the swelling effect of the adhesive and the water penetration along the adhesive/flex interface are the main causes of this contact degradation. Another finding from the experimental work was that the ACF interconnections that had undergone the reflow treatment were more sensitive to the moisture and showed worse reliability during the tests. For a better understanding of the experimental results, 3D finite element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible failure mechanisms of anisotropic conductive film (ACF) joints under isothermal ageing conditions have been identified through experiments. It has been found that ACF joints formed at higher bonding temperatures can prevent increases in the contact resistance for any ageing temperature. The higher the ageing temperature the higher the electrical failure rate is. The formation of conduction gaps between the conductive particles and the pads and damages to the metal coatings of the particle have been identified as the reasons behind the electrical failures during ageing. In order to understand the mechanism for the formation of the conduction gap and damages in metal coatings during the isothermal ageing, computer modelling has been carried out and the results are discussed extensively. The computer analysis shows that stresses concentrate at the edges of the particle–pad interface, where the adhesive matrix meets the particle. This could lead to subsequent damages and reductions in the adhesion strength in that region and it is possible for the conductive particle to be detached from the pad and the adhesive matrix. It is believed that because of this a conduction gap appears. Furthermore, under thermal loading the thermal expansion of the adhesive matrix squeezes the conductive particle and damages the metal coatings. Experimental evidences support this computational finding. It is, therefore, postulated that if an ACF-based electronic component operates in a high temperature aging condition, its electrical and mechanical functionalities will be at risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental, analytical and simulated data are presented in this article to assess the performance of electrodeposited nickel-iron within a novel solenoid microinductor. A design flowchart highlights the primary design principles when developing a microscale magnetic component for DC-DC power converters. Thermal modeling is used to predict the operational conditions that generate undesirable thermal generation within the component. Operating at 0.5MHz, the microinductor achieves an efficiency and power density of 78% and 7.8 W/cm3, respectively.