10 resultados para Electric cables Testing
em Greenwich Academic Literature Archive - UK
Resumo:
This paper describes an industrial application of case-based reasoning in engineering. The application involves an integration of case-based reasoning (CBR) retrieval techniques with a relational database. The database is specially designed as a repository of experiential knowledge and with the CBR application in mind such as to include qualitative search indices. The application is for an intelligent assistant for design and material engineers in the submarine cable industry. The system consists of three components; a material classifier and a database of experiential knowledge and a CBR system is used to retrieve similar past cases based on component descriptions. Work has shown that an uncommon retrieval technique, hierarchical searching, well represents several search indices and that this techniques aids the implementation of advanced techniques such as context sensitive weights. The system is currently undergoing user testing at the Alcatel Submarine Cables site in Greenwich. Plans are for wider testing and deployment over several sites internationally.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models offer the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board". maritimeEXODUS-winner of the BCS, CITIS and RINA awards - is such a model. Features such as the ability to realistically simulate human response to fire, the capability to model human performance in heeled orientations, a virtual reality environment that produces realistic visualisations of the modelled scenarios and with an integrated abandonment model, make maritimeEXODUS a truly unique tool for assessing the evacuation capabilities of all types of vessels under a variety of conditions. This paper describes the maritimeEXODUS model, the SHEBA facility from which data concerning passenger/crew performance in conditions of heel is derived and an example application demonstrating the models use in performing an evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.
Resumo:
Using Acoustic Emission Testing (AET) to determine the onset of paper damage will be demonstrated on tensile coupons made from mechanical pulp. This technique is part of an EU funded project named the Fifth Frame Program. Its aim is to develop methods for determining specific damage mechanisms through AET. Various such techniques of damage detection will be demonstrated in the coming work.
Resumo:
In the present study, a 3D full cell quarter thermo-electric model of a 500kA demonstration cell has been developed and solved. In parallel, a non-linear wave MHD model of the same 500 kA demonstration cell has been developed and solved. A preliminary study of the impact of the interactions between the cell thermo-electric and MHD models will be presented.
Resumo:
This report covers the testing and evaluation of the airEXODUS evacuation model. airEXODUS has been developed for evacuation certification testing, crew training and aircraft design. The report demonstrates the effectiveness of the model.
Resumo:
The waves in commercial cells for electrolytic aluminium production originate at the interface between the liquid aluminium and electrolyte, but their effect can spread into the surrounding busbar network as electric current perturbation, and the total magnetic field acquires a time dependent component. The presented model for the wave development accounts for the nonuniform electric current distribution at the cathode and the whole network of the surrounding busbars. The magnetic field is computed for the continuous current in the fluid zones, all busbars and the ferromagnetic construction elements. When the electric current and the associated magnetic field are computed according to the actual electrical circuit and updated for all times, the instability growth rate is significantly affected. The presented numerical model for the wave and electromagnetic interaction demonstrates how different physical coupling factors are affecting the wave development in the electrolysis cells. These small amplitude self-sustained interface oscillations are damped in the presence of intense turbulent viscosity created by the horizontal circulation velocity field. Additionally, the horizontal circulation vortices create a pressure gradient contributing to the deformation of the interface. Instructive examples for the 500 kA demonstration cell are presented.
Resumo:
The effect of a high electric current density on the interfacial reactions of micro ball grid array solder joints was studied at room temperature and at 150 °C. Four types of phenomena were reported. Along with electromigration-induced interfacial intermetallic compound (IMC) formation, dissolution at the Cu under bump metallization (UBM)/bond pad was also noticed. With a detailed investigation, it was found that the narrow and thin metallization at the component side produced “Joule heating” due to its higher resistance, which in turn was responsible for the rapid dissolution of the Cu UBM/bond pad near to the Cu trace. During an “electromigration test” of a solder joint, the heat generation due to Joule heating and the heat dissipation from the package should be considered carefully. When the heat dissipation fails to compete with the Joule heating, the solder joint melts and molten solder accelerates the interfacial reactions in the solder joint. The presence of a liquid phase was demonstrated from microstructural evidence of solder joints after different current stressing (ranging from 0.3 to 2 A) as well as an in situ observation. Electromigration-induced liquid state diffusion of Cu was found to be responsible for the higher growth rate of the IMC on the anode side.
Resumo:
A physically open, but electrically shielded, microwave open oven can be produced by virtue of the evanescent fields in a waveguide below cutoff. The below cutoff heating chamber is fed by a transverse magnetic resonance established in a dielectric-filled section of the waveguide exploiting continuity of normal electric flux. In order to optimize the fields and the performance of the oven, a thin layer of a dielectric material with higher permittivity is inserted at the interface. Analysis and synthesis of an optimized open oven predicts field enhancement in the heating chamber up to 9.4 dB. Results from experimental testing on two fabricated prototypes are in agreement with the simulated predictions, and demonstrate an up to tenfold improvement in the heating performance. The open-ended oven allows for simultaneous precision alignment, testing, and efficient curing of microelectronic devices, significantly increasing productivity gains.
Resumo:
Rule testing in transport scheduling is a complex and potentially costly business problem. This paper proposes an automated method for the rule-based testing of business rules using the extensible Markup Language for rule representation and transportation. A compiled approach to rule execution is also proposed for performance-critical scheduling systems.