2 resultados para ENVELOPE-FUNCTION APPROXIMATION

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schraudolph proposed an excellent exponential approximation providing increased performance particularly suited to the logistic squashing function used within many neural networking applications. This note applies Intel's streaming SIMD Extensions 2 (SSE2), where SIMD is single instruction multiple data, of the Pentum IV class processor to Schraudolph's technique, further increasing the performance of the logistic squashing function. It was found that the calculation of the new 32-bit SSE2 logistic squashing function described here was up to 38 times faster than the conventional exponential function and up to 16 times faster than a Schraudolph-style 32-bit method on an Intel Pentum D 3.6 GHz CPU.