2 resultados para ELECTRON DENSITY
em Greenwich Academic Literature Archive - UK
Resumo:
N-acetyl-L-glutamic acid, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 4.747(3), b = 12.852(7), c = 13.906(7) Å, V = 848.5(8) Å3, Z = 4, density (calculated) = 1.481 mg/m3, linear absorption coefficient 0.127 mm−1. The crystal structure determination was carried out with MoKalpha X-ray data measured with liquid nitrogen cooling at 100(2) K temperature. In the final refinement cycle the data/restraints/parameter ratios were 1,691/0/131; goodness-of-fit on F(2) = 1.122. Final R indices for [I > 2sigma(I)] were R1 = 0.0430, wR2 = 0.0878 and R indices (all data) R1 = 0.0473, wR2 = 0.0894. The largest electron density difference peak and hole were 0.207 and −0.154 eÅ(−3). Details of the molecular geometry are discussed and compared with a model DFT structure calculated using Gaussian 98.
Resumo:
High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardized