3 resultados para ECG Online Prediction

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-integrity castings require sophisticated design and manufacturing procedures to ensure they are essentially macrodefect free. Unfortunately, an important class of such defects—macroporosity, misruns, and pipe shrinkage—are all functions of the interactions of free surface flow, heat transfer, and solidication in complex geometries. Because these defects arise as an interaction of the preceding continuum phenomena, genuinely predictive models of these defects must represent these interactions explicitly. This work describes an attempt to model the formation of macrodefects explicitly as a function of the interacting continuum phenomena in arbitrarily complex three-dimensional geometries. The computational approach exploits a compatible set of finite volume procedures extended to unstructured meshes. The implementation of the model is described together with its testing and a measure of validation. The model demonstrates the potential to predict reliably shrinkage macroporosity, misruns, and pipe shrinkage directly as a result of interactions among free-surface fluid flow, heat transfer, and solidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.