2 resultados para Dry farming
em Greenwich Academic Literature Archive - UK
Resumo:
Many Web applications walk the thin line between the need for dynamic data and the need to meet user performance expectations. In environments where funds are not available to constantly upgrade hardware inline with user demand, alternative approaches need to be considered. This paper introduces a ‘Data farming’ model whereby dynamic data, which is ‘grown’ in operational applications, is ‘harvested’ and ‘packaged’ for various consumer markets. Like any well managed agricultural operation, crops are harvested according to historical and perceived demand as inferred by a self-optimising process. This approach aims to make enhanced use of available resources through better utlilisation of system downtime - thereby improving application performance and increasing the availability of key business data.
Resumo:
Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.