2 resultados para Drop-in

em Greenwich Academic Literature Archive - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Interprofessional education (IPE) introduced at the beginning of pre-registration training for healthcare professionals attempts to prevent the formation of negative interprofessional attitudes which may hamper future interprofessional collaboration. However, the potential for IPE depends, to some extent, on the readiness of healthcare students to learn together. Objectives: To measure changes in readiness for interprofessional learning, professional identification, and amount of contact between students of different professional groups; and to examine the influence of professional group, student characteristics and an IPE course on these scores over time. Design: Annual longitudinal panel questionnaire survey at four time-points of pre-registration students (n = 1683) drawn from eight healthcare groups from three higher education institutions (HEIs) in the UK. Results: The strength of professional identity in all professional groups was high on entry to university but it declined significantly over time for some disciplines. Similarly students’ readiness for interprofessional learning was high at entry but declined significantly over time for all groups, with the exception of nursing students. A small but significant positive relationship between professional identity and readiness for interprofessional learning was maintained over time. There was very minimal contact between students from different disciplines during their professional education programme. Students who reported gaining the least from an IPE course suffered the most dramatic drop in their readiness for interprofessional learning in the following and subsequent years; however, these students also had the lowest expectations of an IPE course on entry to their programme of study. Conclusion: The findings provide support for introducing IPE at the start of the healthcare students’ professional education to capitalise on students’ readiness for interprofessional learning and professional identities, which appear to be well formed from the start. However, this study suggests that students who enter with negative attitudes towards interprofessional learning may gain the least from IPE courses and that an unrewarding experience of such courses may further reinforce their negative attitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.