3 resultados para Distribution pattern.
em Greenwich Academic Literature Archive - UK
Resumo:
An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution.
Resumo:
This paper presents modelling and design optimization of a microfeeder which, as part of a microassembly system, is used for contactless object delivery. The microfeeder consists of an array of microactuators which are controlled by electrostatic actuation and used for maneuvering outcoming air jet for object hovering and delibery. The airflow behaviour in the microactuator is analysed by means of fluid mechanics and Computational Fluid Dynamics (CFD) simulation from three aspects, theoretical analysis, initial design assessment, and design modifications. The focus is put on the basic types of the microfeeder structure and the effects of structural details to the systematic performance. The structural pattern of the microactuator for forming airflow nozzle is identified and two design plans are proposed as basic structure patterns of pneumatic microactuators. The optimized design numerically shows the ability of delivering objects. This paper analyses the flow distribution pattern in microactuators and points out a way for effective design of pneumatic microfeeder systems. The optimization strategy provided by the present paper has close relevance to the design and manufacture of pneumatic microfeeder systems.
Resumo:
A cross-domain workflow application may be constructed using a standard reference model such as the one by the Workflow Management Coalition (WfMC) [7] but the requirements for this type of application are inherently different from one organization to another. The existing models and systems built around them meet some but not all the requirements from all the organizations involved in a collaborative process. Furthermore the requirements change over time. This makes the applications difficult to develop and distribute. Service Oriented Architecture (SOA) based approaches such as the BPET (Business Process Execution Language) intend to provide a solution but fail to address the problems sufficiently, especially in the situations where the expectations and level of skills of the users (e.g. the participants of the processes) in different organisations are likely to be different. In this paper, we discuss a design pattern that provides a novel approach towards a solution. In the solution, business users can design the applications at a high level of abstraction: the use cases and user interactions; the designs are documented and used, together with the data and events captured later that represents the user interactions with the systems, to feed an intermediate component local to the users -the IFM (InterFace Mapper) -which bridges the gaps between the users and the systems. We discuss the main issues faced in the design and prototyping. The approach alleviates the need for re-programming with the APIs to any back-end service thus easing the development and distribution of the applications