5 resultados para Dispersion of waves
em Greenwich Academic Literature Archive - UK
Resumo:
The first stages in the development of a new design tool, to be used by coastal engineers to improve the efficiency, analysis, design, management and operation of a wide range of coastal and harbour structures, are described. The tool is based on a two-dimensional numerical model, NEWMOTICS-2D, using the volume of fluid (VOF) method, which permits the rapid calculation of wave hydrodynamics at impermeable natural and man-made structures. The critical hydrodynamic flow processes and forces are identified together with the equations that describe these key processes. The different possible numerical approaches for the solution of these equations, and the types of numerical models currently available, are examined and assessed. Preliminary tests of the model, using comparisons with results from a series of hydraulic model test cases, are described. The results of these tests demonstrate that the VOF approach is particularly appropriate for the simulation of the dynamics of waves at coastal structures because of its flexibility in representing the complex free surfaces encountered during wave impact and breaking. The further programme of work, required to develop the existing model into a tool for use in routine engineering design, is outlined.
Resumo:
A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.
Resumo:
The ATTMA "Aerosol Transport in the Trans-Manche Atmosphere" project investigates the transportation and dispersion of air pollutants across the English Channel, in collaboration with local authorities and other Universities in Southern England and Northern France. The research is concerned with both forward and inverse (receptor based) tracking. Two alternative dispersion simulation methods are used: (a) Lagrangian Particle Dispersion (LPD) models, (b) Eulerian Finite Volume type models. This paper is concerned with part (a), the simulations based on LPD models. Two widely applied LPD models are used and compared. Since in many observed episodes the source of pollution is traced outside the region of interest, long range, trans-continental transport is also investigated.
Resumo:
The one-step dispersion of HiPco single-walled carbon nanotubes in aqueous media with the use of a synthetic lyso-phosphatidylcholine was studied. Solubilization occurs through wrapping of lipid molecules around the circumference of the tubes, yielding lipid monolayers on the graphitic sidewalls as evidenced by atomic force microscopy imaging and dynamic light scattering measurements. Raman spectroscopy showed that the dispersion and centrifugation process leads to an effective enrichment of the stable aqueous suspension in carbon nanostructures with smaller diameters.
Resumo:
There is concern in the Cross-Channel region of Nord-Pas-de-Calais (France) and Kent (Great Britain), regarding the extent of atmospheric pollution detected in the area from emitted gaseous (VOC, NOx, S02)and particulate substances. In particular, the air quality of the Cross-Channel or "Trans-Manche" region is highly affected by the heavily industrial area of Dunkerque, in addition to transportation sources linked to cross-channel traffic in Kent and Calais, posing threats to the environment and human health. In the framework of the cross-border EU Interreg IIIA activity, the joint Anglo-French project, ATTMA, has been commissioned to study Aerosol Transport in the Trans-Manche Atmosphere. Using ground monitoring data from UK and French networks and with the assistance of satellite images the project aims to determine dispersion patterns. and identify sources responsible for the pollutants. The findings of this study will increase awareness and have a bearing on future air quality policy in the region. Public interest is evident by the presence of local authorities on both sides of the English Channel as collaborators. The research is based on pollution transport simulations using (a) Lagrangian Particle Dispersion (LPD) models, (b) an Eulerian Receptor Based model. This paper is concerned with part (a), the LPD Models. Lagrangian Particle Dispersion (LPD) models are often used to numerically simulate the dispersion of a passive tracer in the planetary boundary layer by calculating the Lagrangian trajectories of thousands of notional particles. In this contribution, the project investigated the use of two widely used particle dispersion models: the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the model FLEXPART. In both models forward tracking and inverse (or·. receptor-based) modes are possible. Certain distinct pollution episodes have been selected from the monitor database EXPER/PF and from UK monitoring stations, and their likely trajectory predicted using prevailing weather data. Global meteorological datasets were downloaded from the ECMWF MARS archive. Part of the difficulty in identifying pollution sources arises from the fact that much of the pollution outside the monitoring area. For example heightened particulate concentrations are to originate from sand storms in the Sahara, or volcanic activity in Iceland or the Caribbean work identifies such long range influences. The output of the simulations shows that there are notable differences between the formulations of and Hysplit, although both models used the same meteorological data and source input, suggesting that the identification of the primary emissions during air pollution episodes may be rather uncertain.