3 resultados para Dimeric Surfactants
em Greenwich Academic Literature Archive - UK
Resumo:
Water retention and transport in soils is dependent upon the surface tension of the aqueous phase. Surfactants present in aqueous solution reduce the surface tension of aqueous phase. In soil–water systems, this can result in water drainage and reductions in field capacity and hydraulic conductivity. In this investigation, the surface tension of surfactant solutions mixed with soil—in a constant fixed ratio—was measured as a function of surfactant concentration. Two anionic surfactants were used: sodium dodecyl sulphate and sodium bis (2-ethylhexyl) sulfosuccinate. Two soils were also used—a clay soil and a sandy soil. The key observation made by this investigation was that the addition of soil to the surfactant solution provided a further component of surface tension reduction. Neither soil sample reduced the surface tension of water when surfactant was absent from the aqueous phase, though both soils released soil organic matter at low surfactant concentrations as shown by measurement of the chemical oxygen demand of the supernatant solutions. Furthermore, both surfactants were shown to be weakly adsorbed by soil as shown by the use of a methylene blue assay. It is therefore proposed that the additional reduction in surface tension arises from synergistic interactions between the surfactants and dissolved soil organic matter.
Resumo:
The surface-enhanced Raman scattering (SERS) spectra of rhodanine adsorbed on silver nanoparticles have been examined using 514.5 and 632.8 nm excitation. There is evidence that, under the experimental conditions used, rhodanine undergoes a nanoparticle surface-induced reaction resulting in the formation of a dimeric species via the active methylene group in a process which is analogous to the Knoevenagel reaction. The experimental observations are supported by DFT calculations at the B3-LYP/cc-pVDZ level. Calculated energies for the interaction of the E and Z isomers of the dimers of rhodanine with silver nanoparticles support a model in which the (intra-molecular hydrogen bonded) E isomer dimer is of lower energy than the Z isomer. A strong band, at 1566 cm(-1), in the SERS spectrum of rhodanine is assigned to the nu(C=C) mode of the dimer species.
Resumo:
The reaction of the five- or six-membered C,N or C,S-palladacycles [(L)PdCl](2) with PTA (1,3,5-triaza-7-phosphaadamantane) led to the monomeric complexes [(L)Pd(PTA)Cl] 6a, 6b and 7 where LH= N,N-dimethyl-1-phenylmethanamine, benzyl(methyl)sulfane or 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one respectively. Dimeric complexes have also been synthesised: [Pd(2)L(2)(mu-dppe)Cl(2)], where LH = 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1a), (R)- or (S)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (1b, 1c), [Pd(2)L(2)(mu-dppf)Cl(2)], where L= 1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4a) or (R)-3-isopropyl-1-methyl-5-phenyl-1H-benzo[e][1,4]diazepin-2(3H)-one (4b), respectively, and dppe = 1,2-bis(diphenylphosphino)ethane, dppf = 1,1'-bis(diphenylphosphino)ferrocene. The complexes were characterised in solution, by (1)H and (31)P NMR spectroscopy, and single crystals of complexes 6b and 7 were studied in the solid state by X-ray crystallography. The palladacycles were evaluated for in vitro activity as cytotoxic agents on A2780/S cells and also as cathepsin B inhibitors, an enzyme implicated in a number of cancer related events.