2 resultados para Difference Between Generation X and Y Employees

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effect of spatial scale on the interactions between three hymenopteran parasitoids and their weevil hosts was investigated. The parasitoid Mesopolobus incultus (Walker) parasitised Gymnetron pascuorum Gyll.; the parasitoids Entodon sparetus (Walker) and Bracon sp. parasitised Mecinus pyraster Herbst. Both of these weevils develop inside the seedhead of Plantago lanceolata L. but occupy different niches. Seedheads were sampled annually from 162 plants at each of two experimental sites consisting of a series of habitat patches of two distinct sizes. Data were analysed from three site-years. 2. Parasitoid densities at each site-year were closely related to the abundance of their respective weevil hosts. The overall proportion of hosts parasitised was more variable for M. incultus than for E. sparetus and Bracon sp. 3. Changes in spatial scale affected the variability of parasitoid densities. For M. incultus, there was generally a greater degree of additional heterogeneity for all increases of scale; for E. sparetus, this was true only at the largest scales; for Bracon sp., all components of variance were negative. 4. The rate of parasitism was related to host density in different ways at different spatial scales. Mesopolobus incultus exhibited inverse density dependence at the finest (seedhead) scale, direct density dependence at the intermediate (plant) scale, and density independence at the large (habitat area 729 m2) scale. Entodon sparetus showed no response to variation in host density at any spatial scale. Bracon sp. showed direct density dependence only at the intermediate and largest scales. 5. Parasitoids E. sparetus and Bracon sp. seemed able to detect more than one M. pyraster individual in seedheads with multiple host occupancy; a greater incidence of conspecific parasitoids than expected emerged from such seedheads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of cadence and power output on physiological and biomechanical responses to incremental arm-crank ergometry (ACE). Ten male subjects (mean +/- SD age, 30.4 +/-5.4 y; height, 1.78 +/-0.07 m; mass, 86.1 +/-14.2 kg) undertook 3 incremental ACE protocols to determine peak oxygen uptake (VO2 peak; mean of 3 tests: 3.07 +/- 0.17 L.min-1) at randomly assigned cadences of 50, 70, or 90 r.min-1. Heart rate and expired air were continually monitored. Central (RPE-C) and local (RPE-L) ratings of perceived exertion were recorded at volitional exhaustion. Joint angles and trunk rotation were analysed during each exercise stage. During submaximal power outputs of 50, 70, and 90 W, oxygen consumption (VO2) was lowest for 50 r.min-1 and highest for 90 r.min-1 (p < 0.01). VO2 peak was lowest during 50 r.min-1 (2.79 +/-0.45 L.min-1; p < 0.05) when compared with both 70 r.min-1 and 90 r.min-1 (3.16 +/-0.58, 3.24 +/-0.49 L.min-1, respectively; p > 0.05). The difference between RPE-L and RPE-C at volitional exhaustion was greatest during 50 r.min-1 (2.9 +/- 1.6) when compared with 90 r.min-1 (0.9 +/- 1.9, p < 0.05). At VO2 peak, shoulder range of motion (ROM) and trunk rotation were greater for 50 and 70 r.min-1 when compared with 90 r.min-1 (p < 0.05). During submaximal power outputs, shoulder angle and trunk rotation were greatest at 50 r.min-1 when compared with 90 r.min-1 (p < 0.05). VO2 was inversely related to both trunk rotation and shoulder ROM during submaximal power outputs. The results of this study suggest that the greater forces required at lower cadences to produce a given power output resulted in greater joint angles and range of shoulder and trunk movement. Greater isometric contractions for torso stabilization and increased cost of breathing possibly from respiratory-locomotor coupling may have contributed increased oxygen consumption at higher cadences.