2 resultados para Dies (Metal-working)
em Greenwich Academic Literature Archive - UK
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
Recently, research has been carried out to test a novel bumping method which omits the under bump metallurgy forming process by bonding copper columns directly onto the Al pads of the silicon dies. This bumping method could be adopted to simplify the flip chip manufacturing process, increase the productivity and achieve a higher I/O count. This paper describes an investigation of the solder joint reliability of flip-chips based on this new bumping process. Computer modelling methods are used to predict the shape of solder joints and response of flip chips to thermal cyclic loading. The accumulated plastic strain energy at the comer solder joints is used as the damage indicator. Models with a range of design parameters have been compared for their reliability. The parameters that have been investigated are the copper column height, radius and solder volume. The ranking of the relative importance of these parameters is given. For most of the results presented in the paper, the solder material has been assumed to be the lead-free 96.5Sn3.5Ag alloy but some results for 60Sn40Pb solder joints have also been presented.