5 resultados para Damping oscillation

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure for evaluating the dynamic structural response of elastic solid domains is presented. A prerequisite for the analysis of dynamic fluid–structure interaction is the use of a consistent set of finite volume (FV) methods on a single unstructured mesh. This paper describes a three-dimensional (3D) FV, vertex-based method for dynamic solid mechanics. A novel Newmark predictor–corrector implicit scheme was developed to provide time accurate solutions and the scheme was evaluated on a 3D cantilever problem. By employing a small amount of viscous damping, very accurate predictions of the fundamental natural frequency were obtained with respect to both the amplitude and period of oscillation. This scheme has been implemented into the multi-physics modelling software framework, PHYSICA, for later application to full dynamic fluid structure interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work comprises accurate computational analysis of levitated liquid droplet oscillations in AC and DC magnetic fields. The AC magnetic field interacting with the induced electric current within the liquid metal droplet generates intense fluid flow and the coupled free surface oscillations. The pseudo-spectral technique is used to solve the turbulent fluid flow equations for the continuously dynamically transformed axisymmetric fluid volume. The volume electromagnetic force distribution is updated with the shape and position change. We start with the ideal fluid test case for undamped Rayleigh frequency oscillations in the absence of gravity, and then add the viscous and the DC magnetic field damping. The oscillation frequency spectra are further analysed for droplets levitated against gravity in AC and DC magnetic fields at various combinations. In the extreme case electrically poorly conducting, diamagnetic droplet (water) levitation dynamics are simulated. Applications are aimed at pure electromagnetic material processing techniques and the material properties measurements in uncontaminated conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems.