2 resultados para DISTRIBUTION RANGE
em Greenwich Academic Literature Archive - UK
Resumo:
The SB distributional model of Johnson's 1949 paper was introduced by a transformation to normality, that is, z ~ N(0, 1), consisting of a linear scaling to the range (0, 1), a logit transformation, and an affine transformation, z = γ + δu. The model, in its original parameterization, has often been used in forest diameter distribution modelling. In this paper, we define the SB distribution in terms of the inverse transformation from normality, including an initial linear scaling transformation, u = γ′ + δ′z (δ′ = 1/δ and γ′ = �γ/δ). The SB model in terms of the new parameterization is derived, and maximum likelihood estimation schema are presented for both model parameterizations. The statistical properties of the two alternative parameterizations are compared empirically on 20 data sets of diameter distributions of Changbai larch (Larix olgensis Henry). The new parameterization is shown to be statistically better than Johnson's original parameterization for the data sets considered here.
Resumo:
Johnson's SB distribution is a four-parameter distribution that is transformed into a normal distribution by a logit transformation. By replacing the normal distribution of Johnson's SB with the logistic distribution, we obtain a new distributional model that approximates SB. It is analytically tractable, and we name it the "logitlogistic" (LL) distribution. A generalized four-parameter Weibull model and the Burr XII model are also introduced for comparison purposes. Using the distribution "shape plane" (with axes skew and kurtosis) we compare the "coverage" properties of the LL, the generalized Weibull, and the Burr XII with Johnson's SB, the beta, and the three-parameter Weibull, the main distributions used in forest modelling. The LL is found to have the largest range of shapes. An empirical case study of the distributional models is conducted on 107 sample plots of Chinese fir. The LL performs best among the four-parameter models.