12 resultados para Current Limiters

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a Framework for e-Learning and presents the findings of a study investigating whether the use of Blended Learning can fulfill or at least accommodate some of the human requirements presently neglected by current e-Learning systems. This study evaluates the in-house system: Teachmat, and discusses how the use of Blended Learning has become increasingly prevalent as a result of its enhancement and expansion, its relationship to the human and pedagogical issues, and both the positive and negative implications of this reality. [From the Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a high electric current density on the interfacial reactions of micro ball grid array solder joints was studied at room temperature and at 150 °C. Four types of phenomena were reported. Along with electromigration-induced interfacial intermetallic compound (IMC) formation, dissolution at the Cu under bump metallization (UBM)/bond pad was also noticed. With a detailed investigation, it was found that the narrow and thin metallization at the component side produced “Joule heating” due to its higher resistance, which in turn was responsible for the rapid dissolution of the Cu UBM/bond pad near to the Cu trace. During an “electromigration test” of a solder joint, the heat generation due to Joule heating and the heat dissipation from the package should be considered carefully. When the heat dissipation fails to compete with the Joule heating, the solder joint melts and molten solder accelerates the interfacial reactions in the solder joint. The presence of a liquid phase was demonstrated from microstructural evidence of solder joints after different current stressing (ranging from 0.3 to 2 A) as well as an in situ observation. Electromigration-induced liquid state diffusion of Cu was found to be responsible for the higher growth rate of the IMC on the anode side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82×108 A/m2 current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu)3Sn4 layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67×1013 Pa/m, resulting in a stress migration force of 1.82×10-16 N, which is comparable to the electromigration force, 2.82×10-16 N. Dissolution of the Ni+(Ni,Cu)3Sn4 layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardized

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of current stressing on the reliability of 63Sn37Pb solder joints with Cu pads was investigated at temperatures of −5 °C and 125 °C up to 600 h. The samples were stressed with 3 A current (6.0 × 102 A/cm2 in the solder joint with diameter of 800 μm and 1.7 × 104 A/cm2 in the Cu trace with cross section area of 35 × 500 μm). The temperatures of the samples and interfacial reaction within the solder joints were examined. The microstructural change of the solder joints aged at 125 °C without current flow was also evaluated for comparison. It was confirmed that the current flow could cause the temperature of solder joints to rise rapidly and remarkably due to accumulation of massive Joule heat generated by the Cu trace. The solder joints stressed at 125 °C with 3 A current had an extensive growth of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC) at both top and bottom solder-to-pad interfaces. It was a direct result of accelerated aging rather than an electromigration or thermomigration effect in this experiment. The kinetic is believed to be bulk diffusion controlled solid-state reaction, irrespective of the electron flow direction. When stressed at −5 °C with 3 A current, no significant change in microstructure and composition of the solder joints had occurred due to a very low diffusivity of the atoms as most Joule heat was eliminated at low temperature. The IMC evolution of the solder joints aged at 125 °C exhibited a subparabolic growth behavior, which is presumed to be a combined mechanism of grain boundary diffusion and bulk diffusion. This is mainly ascribed to the retardant effect against the diffusion course by the sufficiently thick IMC layer that was initially formed during the reflow soldering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future analysis tools that predict the behavior of electronic components, both during qualification testing and in-service lifetime assessment, will be very important in predicting product reliability and identifying when to undertake maintenance. This paper will discuss some of these techniques and illustrate these with examples. The paper will also discuss future challenges for these techniques.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally stimulated current (TSC) spectroscopy is attracting increasing attention as a means of materials characterization, particularly in terms of measuring slow relaxation processes in solid samples. However, wider use of the technique within the pharmaceutical field has been inhibited by difficulties associated with the interpretation of TSC data, particularly in terms of deconvoluting dipolar relaxation processes from charge distribution phenomena. Here, we present evidence that space charge and electrode contact effects may play a significant role in the generation of peaks that have thus far proved difficult to interpret. We also introduce the use of a stabilization temperature in order to control the space charge magnitude. We have studied amorphous indometacin as a model drug compound and have varied the measurement parameters (stabilization and polarization temperatures), interpreting the changes in spectral composition in terms of charge redistribution processes. More specifically, we suggested that charge drift and diffusion processes, charge injection from the electrodes and high activation energy charge redistribution processes may all contribute to the appearance of shoulders and 'spurious' peaks. We present recommendations for eliminating or reducing these effects that may allow more confident interpretation of TSC data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Counter-current chromatography (CCC) is a technique that shows a lot of potential for large scale purification. Its usefulness in a "research and development" pharmaceutical environment has been investigated, and the conclusions are shown in this article. The use of CCC requires the development of an appropriate solvent system (a parameter of critical importance), a process which can be tedious. This article presents a novel strategy, combining a statistical approach and fast HPLC to generate a three-dimensional partition coefficient map and rapidly predict an optimal solvent system. This screen is performed in half a day and involves 9 experiments per solvent mixture. Test separations were performed using that screen to ensure the validity of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing volumes of municipal solid waste produced worldwide are encouraging the development of processes to reduce the environmental impact of this waste stream. Combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash, and fly ash/APC residues. The disposal or reuse of these residues is however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation has been shown to have a potential for improving the chemical stability and leaching behaviour of both bottom ash and fly ash/APC residues. However, the efficacy of carbonation depends on whether the method of gas application is direct or indirect. Also important are the mineralogy, chemistry and physical properties of the fresh ash, the carbonation reaction conditions such as temperature, contact time, CO2 partial pressure and relative humidity. This paper reviews the main issues pertaining to the application of accelerated carbonation to municipal waste combustion residues to elucidate the potential benefits on the stabilization of such residues and for reducing CO2 emissions. In particular, the modification of ash properties that occur upon carbonation and the CO2 sequestration potential possible under different conditions are discussed. Although accelerated carbonation is a developing technology, it could be introduced in new incinerator facilities as a "finishing step" for both ash treatment and reduction of CO2 emissions.