10 resultados para Cross-relaxation process

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical models of straight-grate pellet induration processes have been developed and carefully validated by a number of workers over the past two decades. However, the subsequent exploitation of these models in process optimization is less clear, but obviously requires a sound understanding of how the key factors control the operation. In this article, we show how a thermokinetic model of pellet induration, validated against operating data from one of the Iron Ore Company of Canada (IOCC) lines in Canada, can be exploited in process optimization from the perspective of fuel efficiency, production rate, and product quality. Most existing processes are restricted in the options available for process optimization. Here, we review the role of each of the drying (D), preheating (PH), firing (F), after-firing (AF), and cooling (C) phases of the induration process. We then use the induration process model to evaluate whether the first drying zone is best to use on the up- or down-draft gas-flow stream, and we optimize the on-gas temperature profile in the hood of the PH, F, and AF zones, to reduce the burner fuel by at least 10 pct over the long term. Finally, we consider how efficient and flexible the process could be if some of the structural constraints were removed (i.e., addressed at the design stage). The analysis suggests it should be possible to reduce the burner fuel lead by 35 pct, easily increase production by 5+ pct, and improve pellet quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modeling strategy is presented to solve the governing equations of fluid flow, temperature (with solidification), and stress in an integrated manner. These equations are discretized using finite volume methods on unstructured grids, which provide the capability to represent complex domains. Both the cell-centered and vertex-based forms of the finite volume discretization procedure are explained, and the overall integrated solution procedure using these techniques with suitable solvers is detailed. Two industrial processes, based on the casting of metals, are used to demonstrate the capabilities of the resultant modeling framework. This manufacturing process requires a high degree of coupling between the governing physical equations to accurately predict potential defects. Comparisons between model predictions and experimental observations are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metals casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena-heat conduction and solidification. However, to predict the formation of porosity (a factor of key importance in cast quality) requires the modelling of the interaction of the fluid flow, heat transfer, solidification and the development of stress-deformation in the solidified part of a component. In this paper, a model of the casting process is described which addresses all the main continuum phenomena involved in a coupled manner. The model is solved numerically using novel finite volume unstructured mesh techniques, and then applied to both the prediction of shape deformation (plus the subsequent formation of a gap at the metal-mould interface and its impact on the heat transfer behaviour) and porosity formation in solidifying metal components. Although the porosity prediction model is phenomenologically simplistic it is based on the interaction of the continuum phenomena and yields good comparisons with available experimental results. This work represents the first of the next generation of casting simulation tools to predict aspects of the structure of cast components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cross-domain workflow application may be constructed using a standard reference model such as the one by the Workflow Management Coalition (WfMC) [7] but the requirements for this type of application are inherently different from one organization to another. The existing models and systems built around them meet some but not all the requirements from all the organizations involved in a collaborative process. Furthermore the requirements change over time. This makes the applications difficult to develop and distribute. Service Oriented Architecture (SOA) based approaches such as the BPET (Business Process Execution Language) intend to provide a solution but fail to address the problems sufficiently, especially in the situations where the expectations and level of skills of the users (e.g. the participants of the processes) in different organisations are likely to be different. In this paper, we discuss a design pattern that provides a novel approach towards a solution. In the solution, business users can design the applications at a high level of abstraction: the use cases and user interactions; the designs are documented and used, together with the data and events captured later that represents the user interactions with the systems, to feed an intermediate component local to the users -the IFM (InterFace Mapper) -which bridges the gaps between the users and the systems. We discuss the main issues faced in the design and prototyping. The approach alleviates the need for re-programming with the APIs to any back-end service thus easing the development and distribution of the applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In global marketing and international management, the fields of Branding and Culture are well discussed as separate disciplines; within both academia and industry. However, there appears to be limited supporting literature, examining brands and culture as a collective discipline. In addition, environmental factors such as ethnicity, nationality and religion are also seen to play a significant role. This in itself adds to the challenges encountered, by those looking to critically apply learning and frameworks, to any information gathered. In the first instance, this paper tries to bring aspects together from Branding and Culture and in doing so, aims to find linkages between the two. The main purpose of this paper is to distil current brand thinking and explore what impact cross-cultural, cross-national, and ethnic interactions have on a brand’s creation. The position of the authors is that without further understanding in this field, a brand will experience what has been termed by them as the ‘Pinocchio Effect’. Pinocchio was a puppet who longed to become a real human being; but sadly encountered difficulties. The conclusion presented is that the critical long-term success of a brand lies in three areas: how it is created; the subsequent associated perceptions; and more specifically in the reality of the relationships that it enjoys. Collectively these processes necessitate an appraisal of connecting strategic management procedures and thinking. Finally, this paper looks into proposing future methods for brand evaluation and strategic management. The aim is to stimulate further thinking in a field; which transcends national, ethnic and cultural boundaries - in the interests of developing new insight, and to provide a platform for marketers to develop more effective communications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract not available

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of interacting complex phenomena takes place during the casting of metallic components. Here molten metal is poured into a mould cavity where it flows, cools, solidifies and then deforms in its solid state. As the metal cools, thermal gradients will promote thermal convection which will redistribute the heat around the component (usually from feeders or risers) towards the solidification front and mushy zone. Also, as the evolving solid regions of the cast component deform they will form gap at the cast-mould interface. This gap may change the rate of solidification in certain parts the casting, hence affecting the manner in which the cast component solidifies. Interaction between a cast component and its surrounding mould will also govern stress magnitudes in both the cast and mould -these may lead to defects such as cracks. This paper presents a multiphysics modelling approach to this complex process. Emphasis will be placed on the interacting phenomena taking place during the process and the modelling strategy used. Comparisons with plant data are also be given.