6 resultados para Cost allocation
em Greenwich Academic Literature Archive - UK
Resumo:
FUELCON is an expert system for optimized refueling design in nuclear engineering. This task is crucial for keeping down operating costs at a plant without compromising safety. FUELCON proposes sets of alternative configurations of allocation of fuel assemblies that are each positioned in the planar grid of a horizontal section of a reactor core. Results are simulated, and an expert user can also use FUELCON to revise rulesets and improve on his or her heuristics. The successful completion of FUELCON led this research team into undertaking a panoply of sequel projects, of which we provide a meta-architectural comparative formal discussion. In this paper, we demonstrate a novel adaptive technique that learns the optimal allocation heuristic for the various cores. The algorithm is a hybrid of a fine-grained neural network and symbolic computation components. This hybrid architecture is sensitive enough to learn the particular characteristics of the ‘in-core fuel management problem’ at hand, and is powerful enough to use this information fully to automatically revise heuristics, thus improving upon those provided by a human expert.
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components
Resumo:
This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly process
Resumo:
This paper studies a two-level supply chain consisting of components supplier and product assembly manufacturer, while the manufacturer shares the investment on shortening supply lead time. The objective of this research is to investigate the benefits of cost sharing strategy and adopting component commonality. The result of numerical analysis demonstrates that using component commonality can help reduce the total cost, especially when the manufacture shares a higher fraction of the cost of investment in shortening supply lead time.
Resumo:
Background: A number of factors are known to influence food preferences and acceptability of new products. These include their sensory characteristics and strong, innate neural influences. In designing foods for any target group, it is important to consider intrinsic and extrinsic characteristics which may contribute to palatability, and acceptability of foods. Objective: To assess age and gender influences on sensory perceptions of novel low cost nutrient-rich food products developed using traditional Ghanaian food ingredients. Materials and Methods: In this study, a range of food products were developed from Ghanaian traditional food sources using the Food Multimix (FMM) concept. These products were subjected to sensory evaluation to assess the role of sensory perception on their acceptability among different target age groups across the life cycle (aged 11-68 years olds) and to ascertain any possible influences of gender on preference and choice. Variables including taste, odour, texture, flavour and appearance were tested and the results captured on a Likert scale and scores of likeness and acceptability analysed. Multivariate analyses were used to develop prediction models for targeted recipe development for different target groups. Multiple factor analysis of variance (ANOVA) and logistic linear regression were employed to test the strength of acceptability and to ascertain age and gender influences on product preference. Results: The results showed a positive trend in acceptability (r = 0.602) which tended towards statistical significance (p = 0.065) with very high product favourability rating (91% acceptability; P=0.005). However, age [odds ratios=1.44 (11-15 years old) odds ratios=2.01 (18-68 years old) and gender (P=0.000)] were major influences on product preference with children and females (irrespective of age) showing clear preferences or dislike of products containing certain particular ingredients. Conclusion: These findings are potentially useful in planning recipes for feeding interventions involving different vulnerable and target groups.