6 resultados para Corrosion kinetics

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag+- and Zn2+-exchanged zeolites zeolites and clays have been used as coatings and in composites to confer broad-spectrum antimicrobial properties on a range of technical and biomedical materials. 11 angstrom tobermorite is a bioactive layer lattice ion exchanger whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial formulations has not yet been explored. In view of this, batch Ag+- and Zn2+-exchange kinetics of two structurally distinct synthetic 11 angstrom tobermorites and their subsequent bactericidal action against Staphylococcus aureus and Pseudomonas aeruginosa are reported. During the exchange reactions, Ag+ ions were found to replace labile interlayer cations; whereas, Zn2+ ions also displaced structural Ca2+ ions from the tobermorite lattice. In spite of these different mechanisms, a simple pseudo-second-order model provided a suitable description of both exchange processes (R-2 >= 0.996). The Ag+- and Zn2+-exchanged tobermorite phases exhibited marked bacteriostatic effects against both bacteria, and accordingly, their potential for use as antimicrobial materials for in situ bone tissue regeneration is discussed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water desorption behaviour of three different zinc oxide dental cements (two polycarboxylates, one phosphate) has been studied in detail. Disc-shaped specimens of each material were prepared and allowed to lose water by being subjected to a low humidity desiccating atmosphere over concentrated sulfuric acid. In all three cements, water loss was found to follow Fick's second law for at least 6 h (until M(t)/M(infinity) values were around 0.5), with diffusion coefficients ranging from 6.03 x 10(-8 )cm(2 )s(-1) (for the zinc phosphate) to 2.056 x 10(-7 )cm(2 )s(-1) (for one of the zinc polycarboxylates, Poly F Plus). Equilibration times for desorption were of the order of 8 weeks, and equilibrium water losses ranged from 7.1% for zinc phosphate to 16.9% and 17.4% for the two zinc polycarboxylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on extensive research on reinforcing steel corrosion in concrete in the past decades, it is now possible to estimate the effect of the progression of reinforcement corrosion in concrete infrastructure on its structural performance. There are still areas of considerable uncertainty in the models and in the data available, however This paper uses a recently developed model for reinforcement corrosion in concrete to improve the estimation process and to indicate the practical implications. In particular stochastic models are used to estimate the time likely to elapse for each phase of the whole corrosion process: initiation, corrosion-induced concrete cracking, and structural strength reduction. It was found that, for practical flexural structures subject to chloride attacks, corrosion initiation may start quite early in their service life. It was also found that, once the structure is considered to be unserviceable due to corrosion-induced cracking, there is considerable remaining service life before the structure can be considered to have become unsafe. The procedure proposed in the paper has the potential to serve as a rational tool for practitioners, operators, and asset managers to make decisions about the optimal timing of repairs, strengthening, and/or rehabilitation of corrosion-affected concrete infrastructure. Timely intervention has the potential to prolong the service life of infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For existing reinforced concrete structures exposed to saline or marine conditions, there is an increasing engineering interest in their remaining safety and serviceability. A significant factor is the corrosion of steel reinforcement. At present there is little field experience and other data available. This limits the possibility for developing purely empirical models for strength and performance deterioration for use in structural safety and serviceability assessment. An alternative approach using theoretical concepts and probabilistic modeling is proposed herein. It is based on the evidence that the rate of diffusion of chlorides is influenced by internal damage to the concrete surrounding the reinforcement. This may be due to localized stresses resulting from external loading or through concrete shrinkage. Usually, the net effect is that the time to initiation of active corrosion is shortened, leading to greater localized corrosion and earlier reduction of ultimate capacity and structural stiffness. The proposed procedure is applied to an example beam and compared to experimental observations,including estimates of uncertainty in the remaining ultimate moment capacity and beam stiffness. Reasonably good agreement between the results of the proposed procedure and the experiment was found