2 resultados para Copper mines and mining

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L-1) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities. (C) 2009 Elsevier Ltd. All rights reserved.