4 resultados para Cooperative systems
em Greenwich Academic Literature Archive - UK
Resumo:
The diversity gains achievable in the generalised distributed antenna system with cooperative users (GDAS-CU) are considered. A GDAS-CU is comprised of M largely separated access points (APs) at one side of the link, and N geographically closed user terminals (UTs) at the other side. The UTs are collaborating together to enhance the system performance, where an idealised message sharing among the UTs is assumed. First, geometry-based network models are proposed to describe the topology of a GDAS-CU. The mean cross-correlation coefficients of signals received from non-collocated APs and UTs are calculated based on the network topology and the correlation models derived from the empirical data. The analysis is also extendable to more general scenarios where the APs are placed in a clustered form due to the constraints of street layout or building structure. Subsequently, a generalised signal attenuation model derived from several stochastic ray-tracing-based pathloss models is applied to describe the power-decaying pattern in urban built-up areas, where the GDAS-CU may be deployed. Armed with the cross-correlation and pathloss model preliminaries, an intrinsic measure of cooperative diversity obtainable from a GDAS-CU is then derived, which is the number of independent fading channels that can be averaged over to detect symbols. The proposed analytical framework would provide critical insight into the degree of possible performance improvement when combining multiple copies of the received signal in such systems.
Resumo:
The emergent behaviour of autonomic systems, together with the scale of their deployment, impedes prediction of the full range of configuration and failure scenarios; thus it is not possible to devise management and recovery strategies to cover all possible outcomes. One solution to this problem is to embed self-managing and self-healing abilities into such applications. Traditional design approaches favour determinism, even when unnecessary. This can lead to conflicts between the non-functional requirements. Natural systems such as ant colonies have evolved cooperative, finely tuned emergent behaviours which allow the colonies to function at very large scale and to be very robust, although non-deterministic. Simple pheromone-exchange communication systems are highly efficient and are a major contribution to their success. This paper proposes that we look to natural systems for inspiration when designing architecture and communications strategies, and presents an election algorithm which encapsulates non-deterministic behaviour to achieve high scalability, robustness and stability.
Resumo:
In this paper, we explore the application of cooperative communications in ultra-wideband (UWB) wireless body area networks (BANs), where a group of on-body devices may collaborate together to communicate with other groups of on-body equipment. Firstly, time-domain UWB channel measurements are presented to characterize the body-centric multipath channel and to facilitate the diversity analysis in a cooperative BAN (CoBAN). We focus on the system deployment scenario when the human subject is in the sitting posture. Important channel parameters such as the pathloss, power variation, power delay profile (PDP), and effective received power (ERP) crosscorrelation are investigated and statistically analyzed. Provided with the model preliminaries, a detailed analysis on the diversity level in a CoBAN is provided. Specifically, an intuitive measure is proposed to quantify the diversity gains in a single-hop cooperative network, which is defined as the number of independent multipaths that can be averaged over to detect symbols. As this measure provides the largest number of redundant copies of transmitted information through the body-centric channel, it can be used as a benchmark to access the performance bound of various diversity-based cooperative schemes in futuristic body sensor systems.