13 resultados para Conveyors

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop a mathematical model with the ability to predict particle degradation during dilute phase pneumatic conveying. A numerical procedure, based on a matrix representation of degradation processes, is presented to determine the particle impact degradation propensity from a small number of particle single impact tests carried out in a new designed laboratory scale degradation tester. A complete model of particle degradation during dilute phase pneumatic conveying is then described, where the calculation of degradation propensity is coupled with a flow model of the solids and gas phases in the pipeline. Numerical results are presented for degradation of granulated sugar in an industrial scale pneumatic conveyor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Eulerian-based numerical model of particle degradation in dilute-phase pneumatic conveying systems including bends of different angles. The model shows reasonable agreement with detailed measurements from a pilot-sized pneumatic conveying system and a much larger scale pneumatic conveyor. The potential of the model to predict degradation in a large-scale conveying system from an industrial plant is demonstrated. The importance of the effect of the bend angle on the damage imparted to the particles is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into predicting failure of pneumatic conveyor pipe bends due to hard solid particle impact erosion has been carried out on an industrial scale test rig. The bend puncture point locations may vary with many factors. However, bend orientation was suspected of being a main factor due to the biased particle distribution pattern of a high concentration flow. In this paper, puncture point locations have been studied with different pipe bend orientations and geometry (a solids loading ratio of 10 being used for the high concentration flow). Test results confirmed that the puncture point location is indeed most significantly influenced by the bend orientation (especially for a high concentration flow) due to the biased particle distribution and biased particle flux distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to find a link between results obtained from a laboratory erosion tester and tests carried out on a pneumatic conveyor, a comparison has been made between weight loss from bends on an industrial-scale pneumatic conveyor and erosion rates obtained in a small centrifugal erosion tester, for the same materials. Identical test conditions have been applied to both experiments so that comparable test results have been obtained. The erosion rate of mild steel commonly used as the wall material of conveyor pipes and pipe bends was determined individually on both test rigs. A relationship between weight loss from the bends and erosion rate determined from the tester has been developed. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two major types of erosion testing devices that are used throughout the world for quantifying particle impact erosion against a solid surface. The first of these uses pressurised air to accelerate abrasive particles through a nozzle so that they impinge upon a target specimen. The second adopts a rotating disc to accelerate abrasive particles using the centripetal effect so that they impinge upon a series of targets arranged around the periphery of the disc. This paper reports the findings of a collaborative project that was designed to compare the performance and results obtained from a rig of each of the two types mentioned above. The sand blast type rig was provided by The Department of Powder Science Technology (POSTEC) at The Telemark Technological Research and Development Centre (TEL-TEK), Porsgrunn, Norway while the centripetal effect accelerator was provided by The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, London, UK. The test programme included tests against a wide range of materials that are commonly used in pneumatic handling facilities. (Pneumatic handling is a means of conveying and transporting powders and granular solid materials in bulk in industrial process plant, through pipelines using a gas as the carrier medium.) Olivine sand was used as the abrasive and it was projected against the test specimens at velocities and concentrations commensurate with those seen in pneumatic conveyors. In all instances the materials used in the test programme were taken from the same batch so that scatter of experimental results due to specimen variation was minimised. The paper contains a series of recommendations for erosion testing equipment. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the dependence of the power consumption of pneumatic conveyors upon conveyed materials, pipeline route and bore, and mode of flow has been examined. The findings are that, with different materials and modes of flow, not only is the amount of power consumed very different but it varies in different ways with pipe bore and routing. Additionally it has been found that, for any given conveying system, the choice of air mover also has a strong influence on the power requirement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.