4 resultados para Contract interpretation
em Greenwich Academic Literature Archive - UK
Resumo:
For the purposes of starting to tackle, within artificial intelligence (AI), the narrative aspects of legal narratives in a criminal evidence perspective, traditional AI models of narrative understanding can arguably supplement extant models of legal narratives from the scholarly literature of law, jury studies, or the semiotics of law. Not only: the literary (or cinematic) models prominent in a given culture impinge, with their poetic conventions, on the way members of the culture make sense of the world. This shows glaringly in the sample narrative from the Continent-the Jama murder, the inquiry, and the public outcry-we analyse in this paper. Apparently in the same racist crime category as the case of Stephen Lawrence's murder (in Greenwich on 22 April 1993) with the ensuing still current controversy in the UK, the Jama case (some 20 years ago) stood apart because of a very unusual element: the eyewitnesses identifying the suspects were a group of football referees and linesmen eating together at a restaurant, and seeing the sleeping man as he was set ablaze in a public park nearby. Professional background as witnesses-cum-factfinders in a mass sport, and public perceptions of their required characteristics, couldn't but feature prominently in the public perception of the case, even more so as the suspects were released by the magistrate conducting the inquiry. There are sides to this case that involve different expected effects in an inquisitorial criminal procedure system from the Continent, where an investigating magistrate leads the inquiry and prepares the prosecution case, as opposed to trial by jury under the Anglo-American adversarial system. In the JAMA prototype, we tried to approach the given case from the coign of vantage of narrative models from AI.
Resumo:
This paper concerns the use of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste and specifically, the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of paste materials at the molecular level. Ultrasonic techniques are a widely used and a reliable form of non-destructive testing of materials. This is because techniques such as ultrasounds while used for testing or monitoring material properties, has offered immense benefits in applications where access to the sample is restricted or when handling the sample for testing could interfere with the monitoring or analysis process. Very often, this would mean that the measurements taken are not a true representation of the behaviour of the material (due to externally incorporated changes into the material's physical state during the removal or testing process). Ultrasonic based techniques are being increasingly used for quality control and production monitoring functions which requires evaluation of the changes in material properties over wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough, and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capacity to take rapid measurements in systems which are optically opaque. The viscometer and rheometer are two of the most widely used rheological instruments used in industry for monitoring the quality of solder pastes, during the production and packaging stage. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. It is for these reasons that materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers) are keen to see the development of simple, easy to use and accurate techniques for the theological characterisation of solder pastes. The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
This paper aims to explore and discuss the role of nostalgia (a concept that is inherently grounded within a psychological framework) in heritage interpretation from both provider and consumer perspectives. Whilst many cultural practitioners recognise the relationship between sentimentality and authenticity, particularly within a folk-heritage context, few have sought to examine the effect this has on the visitor experience. This paper questions visitors’ ability to objectively assess objects and experiences at heritage sites, and the role of practitioners in presenting often blurred views of social history that may sometimes negate historical fact. Drawing on case study research at two UK living museums, Blists Hill Victorian Town in Shropshire, England, and the Big Pit: National Coal Museum in Wales, notions of reminiscence, authenticity, myth and intangibility are considered within the framework of the interpretive experience. Findings suggest that the visitor experience is inherently subjective, highly individual and that the concept of intangibility is integral to an understanding of the nostalgia-authenticity debate.