4 resultados para Construction process improvement

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL algorithm, which uses a combination of standard VRP heuristics, is developed first to solve instances of the VRP. A ML version, which extends the global view of these heuristics, is then created, using variants of the construction and improvement heuristics at each level. Finally some multilevel enhancements are developed. Experimentation is used to find suitable parameter settings and the final version is tested on two well-known VRP benchmark suites. Results comparing both SL and ML algorithms are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Common Learning Management Systems (for example Moodle [1] and Blackboard [2]) are limited in the amount of personalisation that they can offer the learner. They are used widely and do offer a number of tools for instructors to enable them to create and manage courses, however, they do not allow for the learner to have a unique personalised learning experience. The e-Learning platform iLearn offers personalisation for the learner in a number of ways and one way is to offer the specific learning material to the learner based on the learner's learning style. Learning styles and how we learn is a vast research area. Brusilovsky and Millan [3] state that learning styles are typically defined as the way people prefer to learn. Examples of commonly used learning styles are Kolb Learning Styles Theory [4], Felder and Silverman Index of Learning Styles [5], VARK [6] and Honey and Mumford Index of Learning Styles [7] and many research projects (SMILE [8], INSPIRE [9], iWeaver [10] amonst others) attempt to incorporate these learning styles into adaptive e-Learning systems. This paper describes how learning styles are currently being used within the area of adaptive e-Learning. The paper then gives an overview of the iLearn project and also how iLearn is using the VARK learning style to enhance the platform's personalisation and adaptability for the learner. This research also describes the system's design and how the learning style is incorporated into the system design and semantic framework within the learner's profile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A project within a computing department at the University of Greenwich, has been carried out to identify whether podcasting can be used to help understanding and learning of a subject (3D Animation). We know that the benefits of podcasting in education (HE) can be justified, [1]; [2]; [3]; [4]; [5]; [6] and that some success has been proven, but this paper aims to report the results of a term-long project that provided podcast materials for students to help support their learning using Xserve and Podcast Producer technology. Findings in a previous study [6] identified podcasting as a way to diversify learning and provde a more personalised learning experience for students, as well as being able to provide access to a greater mix of learning styles [7]. Finally this paper aims to present the method of capture and distribution, the methodologies of the study, analysis of results, and conclusions that relate to podcasting and enhanced supported learning.