8 resultados para Computer service industry
em Greenwich Academic Literature Archive - UK
Resumo:
The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.
Resumo:
This paper describes an industrial application of case-based reasoning in engineering. The application involves an integration of case-based reasoning (CBR) retrieval techniques with a relational database. The database is specially designed as a repository of experiential knowledge and with the CBR application in mind such as to include qualitative search indices. The application is for an intelligent assistant for design and material engineers in the submarine cable industry. The system consists of three components; a material classifier and a database of experiential knowledge and a CBR system is used to retrieve similar past cases based on component descriptions. Work has shown that an uncommon retrieval technique, hierarchical searching, well represents several search indices and that this techniques aids the implementation of advanced techniques such as context sensitive weights. The system is currently undergoing user testing at the Alcatel Submarine Cables site in Greenwich. Plans are for wider testing and deployment over several sites internationally.
Resumo:
The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.
Resumo:
When designing a new passenger ship or modifiying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the building and aviation industries, computer based evacuation models are being used to tackle similar issues. In these industries, the traditonal restrictive prescriptive approach to design is making way for performance based design methodologies using risk assessment and computer simulation. In the maritime industry, ship evacuation models off the promise to quickly and efficiently bring these considerations into the design phase, while the ship is "on the drawing board". This paper describes the development of evacuation models with applications to passenger ships and further discusses issues concerning data requirements and validation.
Resumo:
The factors that are driving the development and use of grids and grid computing, such as size, dynamic features, distribution and heterogeneity, are also pushing to the forefront service quality issues. These include performance, reliability and security. Although grid middleware can address some of these issues on a wider scale, it has also become imperative to ensure adequate service provision at local level. Load sharing in clusters can contribute to the provision of a high quality service, by exploiting both static and dynamic information. This paper is concerned with the presentation of a load sharing scheme, that can satisfy grid computing requirements. It follows a proactive, non preemptive and distributed approach. Load information is gathered continuously before it is needed, and a task is allocated to the most appropriate node for execution. Performance and reliability are enhanced by the decentralised nature of the scheme and the symmetric roles of the nodes. In addition, the scheme exhibits transparency characteristics that facilitate integration with the grid.
Resumo:
Predicting the reliability of newly designed products, before manufacture, is obviously highly desirable for many organisations. Understanding the impact of various design variables on reliability allows companies to optimise expenditure and release a package in minimum time. Reliability predictions originated in the early years of the electronics industry. These predictions were based on historical field data which has evolved into industrial databases and specifications such as the famous MIL-HDBK-217 standard, plus numerous others. Unfortunately the accuracy of such techniques is highly questionable especially for newly designed packages. This paper discusses the use of modelling to predict the reliability of high density flip-chip and BGA components. A number of design parameters are investigated at the assembly stage, during testing, and in-service.
Resumo:
When designing a new passenger ship or naval vessel or modifying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models are now recognised by IMO through the publication of the Interim Guidelines for Evacuation Analysis of New and Existing Passenger Ships including Ro-Ro. This approach offers the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board" as well as reviewing and optimising the evacuation provision of the existing fleet. Other applications of this technology include the optimisation of operating procedures for civil and naval vessels such as determining the optimal location of a feature such as a casino, organising major passenger movement events such as boarding/disembarkation or restaurant/theatre changes, determining lean manning requirements, location and number of damage control parties, etc. This paper describes the development of the maritimeEXODUS evacuation model which is fully compliant with IMO requirements and briefly presents an example application to a large passenger ferry.