7 resultados para Combined sewers
em Greenwich Academic Literature Archive - UK
Resumo:
CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.
Resumo:
The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
Resumo:
Cold crucible furnace is widely used for melting reactive metals for high quality castings. Although the water cooled copper crucible avoids contamination, it produces a low superheat of the melt. Experimental and theoretical investigations of the process showed that the increase of the supplied power to the furnace leads to a saturation in the temperature rise of the melt, and no significant increase of the melt superheat can be obtained. The computer model of theprocess has been developed to simulate the time dependent turbulent flow, heat transfer with phase change, and AC and DC magnetohydrodynamics in a time varying liquid metal envelope. The model predicts that the supermimposition of a strong DC field on top of the normal AC field reduces the level of turbulience and stirring in the liquid metal, thereby reducing the heat loss through the base of the crucible and increasing the superheat. The direct measurements of the temperature in the commercial size cold crucbile has confirmed the computer redictions and showed that the addition of a DC field increased the superheat in molten TiAl from ~45C (AC field only) to ~81C (DC+AC fields). The present paper reports further predictions of the effect of a dDC field on top of the AC field and compares these with experimental data.
Resumo:
Evacuation models have been playing an important function in the transition process from prescriptive fire safety codes to performance-based ones over the last three decades. In fact, such models became also useful tools in different tasks within fire safety engineering field, such as fire risks assessment and fire investigation. However, there are some difficulties in this process when using these models. For instance, during the evacuation modelling analysis, a common problem faced by fire safety engineers concerns the number of simulations which needs to be performed. In other terms, which fire designs (i.e., scenarios) should be investigated using the evacuation models? This type of question becomes more complex when specific issues such as the optimal positioning of exits within an arbitrarily structure needs to be addressed. Therefore, this paper presents a methodology which combines the use of evacuation models with numerical techniques used in the operational research field, such as Design of Experiments (DoE), Response Surface Models (RSM) and the numerical optimisation techniques. The methodology here presented is restricted to evacuation modelling analysis, nevertheless this same concept can be extended to fire modelling analysis.
Resumo:
Without sewers, more children die, and those who survive suffer in terms of physical growth and educational attainment. Donor policies and advice on sewers are wrong in three key respects. Sewers in cities are not optional extras but essential. Sewers need to be financed by taxation not user charges. And sewers in cities are affordable for most countries, many of whom are already investing in sewers in their cities. The aid needed is concentrated in a few countries, and this is affordable for rich countries.