36 resultados para Climatologia medica
em Greenwich Academic Literature Archive - UK
Resumo:
11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.
Resumo:
In response to a burgeoning interest in the prospective clinical applications of hydraulic calcium (alumino)silicate cements, the in vitro bioactivity and dissolution characteristics of a white Portland cement have been investigated. The formation of an apatite layer within 6 h of contact with simulated body fluid was attributed to the rapid dissolution of calcium hydroxide from the cement matrix and to the abundance of pre-existing Si-OH nucleation sites presented by the calcium silicate hydrate phase. A simple kinetic model has been used to describe the rate of apatite formation and an apparent pseudo-second-order rate constant for the removal of HPO42- ions frorn solultion has been calculated (k(2) = 5.8 x 10(-4) g mg(-1)). Aspects of the chemistry of hydraulic cements are also discussed with respect to their potential use in the remedial treatment of living tissue. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 166-174, 2009
Resumo:
Ag+- and Zn2+-exchanged zeolites zeolites and clays have been used as coatings and in composites to confer broad-spectrum antimicrobial properties on a range of technical and biomedical materials. 11 angstrom tobermorite is a bioactive layer lattice ion exchanger whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial formulations has not yet been explored. In view of this, batch Ag+- and Zn2+-exchange kinetics of two structurally distinct synthetic 11 angstrom tobermorites and their subsequent bactericidal action against Staphylococcus aureus and Pseudomonas aeruginosa are reported. During the exchange reactions, Ag+ ions were found to replace labile interlayer cations; whereas, Zn2+ ions also displaced structural Ca2+ ions from the tobermorite lattice. In spite of these different mechanisms, a simple pseudo-second-order model provided a suitable description of both exchange processes (R-2 >= 0.996). The Ag+- and Zn2+-exchanged tobermorite phases exhibited marked bacteriostatic effects against both bacteria, and accordingly, their potential for use as antimicrobial materials for in situ bone tissue regeneration is discussed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the current study was to evaluate the impact of chitosan derivatives, namely N-octyl-chitosan and N-octyl-O-sulfate chitosan, incorporated in calcium phosphate implants to the release profiles of model drugs. The rate and extent of calcein (on M.W. 650 Da) ED, and FITC-dextran (M.W. 40 kDa) on in vitro release were monitored by fluorescence spectroscopy. Results show that calcein release is affected by the type of chitosan derivative used. A higher percentage of model drug was released when the hydrophilic polymer N-octyl-sulfated chitosan was present in the tablets compared with the tablets containing the hydrophobic polymer N-octyl-chitosan. The release profiles of calcein or FD from tablets containing N-octyl-O-sulfate revealed a complete release for FD after 120 h compared with calcein where 20% of the drug was released over the same time period. These results suggest that the difference in the release profiles observed from the implants is dependent on the molecular weight of the model drugs. These data indicate the potential of chitosan derivatives in controlling the release profile of active compounds from calcium phosphate implants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4887-4901, 2009.
Resumo:
The purpose of the present study was to use attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and target factor analysis (TFA) to investigate the permeation of model drugs and formulation components through Carbosil® membrane and human skin. Diffusion studies of saturated solutions in 50:50 water/ethanol of methyl paraben (MP), ibuprofen (IBU) and caffeine (CF) were performed on Carbosil® membrane. The spectroscopic data were analysed by target factor analysis, and evolution profiles of the signal for each component (i.e. the drug, water, ethanol and membrane) over time were obtained. Results showed that the data were successfully deconvoluted as correlations between factors from the data and reference spectra of the components, were above 0.8 in all cases. Good reproducibility over three runs for the evolution profiles was obtained. From the evolution profiles it was observed that water diffused better through the Carbosil® membrane than ethanol, confirming the hydrophilic properties of the Carbosil® membrane used. IBU diffused slower compared with MP and CF. The evolution profile of CF was very similar to that of water, probably because of the high solubility of CF in water, indicating that both compounds are diffusing concurrently. The second part of the work involved a study of the evolution profiles of the components of a commercial topical gel containing 5% (w/w) of ibuprofen as it permeated through human skin. Although the system was much more complex, data were still successfully deconvoluted and the different components of the formulation identified except for benzyl alcohol which might be attributed to the low concentrations of benzyl alcohol used in topical formulations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The reaction of the five-membered C,N-palladacycle [(L)PdCl](2), where LH = 1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one, with 1,2-ethanebis(diphenylphosphine), dppe, leads to the formation of the bridged palladacycle. [Pd(2)L(2)(mu-dppe)Cl(2)] 3, which was characterised in solution by (1)H and (31)P NMR spectroscopy and in the solid state by X-ray crystallography. Complex 3 was tested in vitro against a number of cell lines. For example, it inhibited K562 leukaemia cells with an IC(50) value of 4.3 microM (1 h exposure) and displayed cathepsin B inhibitory action with an IC(50) value of 3 microM.
Resumo:
[No abstract is available for this article.]
Resumo:
Purpose. To examine the thermal transition(s) between different polymorphic forms of Nifedipine and to define experimental conditions that lead to the generation of polymorph IV. Methods. Experiments were performed using a DSC 823e (Mettler Toledo). Nifedipine exists in four polymorphic forms, as well as an amorphous state. Examination of Nifedipine was conducted using the following method(s): cycle 1: 25ºC to 190ºC, 190ºC to 25ºC (formation of amorphous Nifedipine); cycle 2: 25ºC to X (60,70,80...150ºC), X to 25ºC; cycle 3: 25ºC to 190ºC and holding isothermally for 5 min between cycles (heating/cooling rate of 10ºC/min). Results. The amorphous state Nifedipine can sustain heating up to 90ºC without significant changes in its composition. Cycle 2 of amorphous material heated up to 90ºC shows only the glass transition at ~44ºC. In cycle 3 of the same material, a glass transition has been recorded at ~44ºC, followed by two exotherms (~100 and ~115ºC (crystallisation of polymorph III and II, respectively) and an endotherm (169ºC (melting of polymorphs I/II)). Samples that have been heated to temperatures between 100ºC and 120ºC in the second cycle showed a glass transition at ~44ºC and an additional exotherm at ~95ºC (crystallisation of polymorph III) on cooling a exotherm was observed at ~40ºC (crystallisation of polymorph IV). The same material showed no glass transition in cycle 3 but an endotherm at around 62ºC (melting of polymorph IV) an exotherm (~98ºC) and an endotherm (169ºC) melting of polymorph I/II. Heating the sample to a temperatures greater than 130ºC in cycle two results in a glass transition at ~44ºC, and two exotherms at ~102 and 125ºC (crystallisation of polymorphs III and I, respectively). Conclusions. DSC data suggests that polymorph IV can only be produced from amorphous or polymorph III samples. The presence of polymorph I or II drives the conversion of the less stable polymorphic form IV into the most stable form, I. Although form IV of Nifedipine can easily be created, following defined experimental conditions, it may only coexist with amorphous or polymorph III states. When polymorphs I and II are present in the sample polymorph IV cannot be etected.
Resumo:
Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.
Resumo:
Knipholone (KP) and knipholone anthrone (KA) are natural 4-phenylanthraquinone structural analogues with established differential biological effects including in vitro antioxidant [1] and antimicrobial properties [2]. The present study was designed to investigate the comparative in vitro cytotoxic activity and the possible mechanism of action of these two compounds. We demonstrated that KA is by order of magnitude more cytotoxic to mammalian cells than KP. In parallel with the demonstrated cytotoxic effect, KA but not KP induces prooxidative DNA damage in the presence of copper ions. In order to establish the possible involvement of reactive oxygen species in the KA-mediated prooxidative effect, we investigated the protective effect of several metal chelators and reactive oxygen species scavengers. Our data suggest that reactive oxygen species such as hydrogen peroxide are involved and a good correlation between prooxidative action, antioxidant effect and cytotoxicity is established for these two structural analogues. The chemistry, pharmacology and potential medicinal/toxicological potential of these compounds are discussed.
Resumo:
Sigmoidin A (SGN) is a prenylated flavanone derivative of eriodictyol (ERD) with reported moderate antioxidant, antimicrobial and anti-inflammatory activity. Since ERD and other structurally similar antioxidant phenolic compounds have been shown to induce prooxidative macromolecular damage and cytotoxicity in cancer cells, the comparative in vitro effects of these structural analogues on cancer cell viability and Cu(II)-dependent DNA damage were studied. In the presence of Cu(II) ions, both SGN and ERD (7.4-236 µM) caused comparable concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by SGN and ERD could be abolished by ROS scavengers, glutathione (GSH) and catalase as well as EDTA and a specific Cu(I) chelator neocuproine. Both ERD and SGN readily reduce Cu(II) to Cu(I) suggesting a prooxidative mechanism of DNA damage. In a cell free system, ERD and SGN did also show comparable radical scavenging activity. SGN was, however, by an order of magnitude more cytotoxic to cancer cells than ERD and this effect was significantly attenuated by GSH suggesting a prooxidative mechanism of cell death. A depletion of intracellular GSH level by SGN in cancer cells is also demonstrated.
Resumo:
In the context of trans-dermal drug delivery it is very important to have mechanistic insight into the barrier function of the skin's stratum corneum and the diffusion mechanisms of topically applied drugs. Currently spectroscopic imaging techniques are evolving which enable a spatial examination of various types of samples in a dynamic way. ATR-FTIR imaging opens up the possibility to monitor spatial diffusion profiles across the stratum corneum of a skin sample. Multivariate data analyses methods based on factor analysis are able to provide insight into the large amount of spectroscopically complex and highly overlapping signals generated. Multivariate target factor analysis was used for spectral resolution and local diffusion profiles with time through stratum corneum. A model drug, 4-cyanophenol in polyethylene glycol 600 and water was studied. Results indicate that the average diffusion profiles between spatially different locations show similar profiles despite the heterogeneous nature of the biological sample and the challenging experimental set-up.
Resumo:
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to simultaneously follow the diffusion of model drugs and solvent across polydimethylsiloxane (silicone) membrane. Three model drugs, cyanophenol (CNP), methyl nicotinate (MN) and butyl paraben (BP) were selected to cover a range of lipophilicities. Isostearyl isostearate (ISIS) was chosen as the solvent because its large molecular weight should facilitate observation of whether the drug molecules are able to diffuse through the membrane independently of the solvent. The diffusion of the three drugs and the solvent was successfully described by a Fickian model. The effects of parameters such as the absorption wavelength used to follow diffusion on the calculated diffusion coefficient were investigated. Absorption wavelength which affects the depth of penetration of the infrared radiation into the membrane did not significantly affect the calculated diffusion coefficient over the wavelength range tested. Each of the model drugs was observed to diffuse independently of the solvent across the membrane. The diffusion of a CNP-ISIS hydrogen bonded complex across the membrane was also monitored. The relative diffusion rates of the solute and solvent across the membrane can largely be accounted for by the molecular size of the permeant.
Resumo:
The uptake and diffusion of solvents across polymer membranes is important in controlled drug delivery, effects on drug uptake into, for example, infusion bags and containers, as well as transport across protective clothing. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been used to monitor the effects of different solvents on the diffusion of a model compound, 4-cyanophenol (CNP) across silicone membrane and on the equilibrium concentration of CNP obtained in the membrane following diffusion. ATR-FTIR spectroscopic imaging of membrane diffusion was used to gain an understanding of when the boundary conditions applied to Fick's second law, used to model the diffusion of permeants across the silicone membrane do not hold. The imaging experiments indicated that when the solvent was not taken up appreciably into the membrane, the presence of discrete solvent pools between the ATR crystal and the silicone membrane can affect the diffusion profile of the permeant. This effect is more significant if the permeant has a high solubility in the solvent. In contrast, solvents that are taken up into the membrane to a greater extent, or those where the solubility of the permeant in the vehicle is relatively low, were found to show a good fit to the diffusion model. As such these systems allow the ATR-FTIR spectroscopic approach to give mechanistic insight into how the particular solvents enhance permeation. The solubility of CNP in the solvent and the uptake of the solvent into the membrane were found to be important influences on the equilibrium concentration of the permeant obtained in the membrane following diffusion. In general, solvents which were taken up to a significant extent into the membrane and which caused the membrane to swell increased the diffusion coefficient of the permeant in the membrane though other factors such as solvent viscosity may also be important.