8 resultados para Classes of flow correction

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation and near-field radiation of aerodynamic sound from a low-speed unsteady flow over a two-dimensional automobile door cavity is simulated by using a source-extraction-based coupling method. In the coupling procedure, the unsteady cavity flow field is first computed solving the Reynolds averaged Navier–Stokes (RANS) equations. The radiated sound is then calculated by using a set of acoustic perturbation equations with acoustic source terms which are extracted from the time-dependent solutions of the unsteady flow. The aerodynamic and its resulting acoustic field are computed for the Reynolds number of 53,266 based on the base length of the cavity. The free stream flow velocity is taken to be 50.9m/s. As first stage of the numerical investigation of flow-induced cavity noise, laminar flow is assumed. The CFD solver is based on a cell-centered finite volume method. A dispersion-relation-preserving (DRP), optimized, fourth-order finite difference scheme with fully staggered-grid implementation is used in the acoustic solver

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the dependence of the power consumption of pneumatic conveyors upon conveyed materials, pipeline route and bore, and mode of flow has been examined. The findings are that, with different materials and modes of flow, not only is the amount of power consumed very different but it varies in different ways with pipe bore and routing. Additionally it has been found that, for any given conveying system, the choice of air mover also has a strong influence on the power requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a special class of flow-shop problems, known as the proportionate flow shop. In such a shop, each job flows through the machines in the same order and has equal processing times on the machines. The processing times of different jobs may be different. It is assumed that all operations of a job may be compressed by the same amount which will incur an additional cost. The objective is to minimize the makespan of the schedule together with a compression cost function which is non-decreasing with respect to the amount of compression. For a bicriterion problem of minimizing the makespan and a linear cost function, an O(n log n) algorithm is developed to construct the Pareto optimal set. For a single criterion problem, an O(n2) algorithm is developed to minimize the sum of the makespan and compression cost. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the extensive literature survey based both on theoretical rationales for hedging as well as the empirical evidence that support the implications of the theory regarding the arguments for the corporate risk management relevance and its influence on the company’s value. The survey of literature presented in this paper has revealed that there are two chief classes of rationales for corporate decision to hedge - maximisation of shareholder value or maximisation of managers’ private utility. The paper concludes that, the total benefit of hedging is the combination of all these motives and, if the costs of using corporate risk management instruments are less than the benefits provided via the avenues mentioned in this paper, or any other benefit perceived by the market, then risk management is a shareholder-value enhancing activity.