2 resultados para Cationic polymerization

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that volumetric contraction and solidification during the polymerization process of restorative composites in combination with bonding to the hard tissue result in stress transfer and inward deformation of the cavity walls of the restored tooth. Deformation of the walls decreases the size of the cavity during the filling process. This fact has a profound influence on the assumption-raised and discussed in this paper-that an incremental filling technique reduces the stress effect of composite shrinkage on the tooth. Developing stress fields for different incremental filling techniques are simulated in a numerical analysis. The analysis shows that, in a restoration with a well-established bond to the tooth-as is generally desired-incremental filling techniques increase the deformation of the restored tooth. The increase is caused by the incremental deformation of the preparation, which effectively decreases the total amount of composite needed to fill the cavity. This leads to a higher-stressed tooth-composite structure. The study also shows that the assessment of intercuspal distance measurements as well as simplifications based on generalization of the shrinkage stress state cannot be sufficient to characterize the effect of polymerization shrinkage in a tooth-restoration complex. Incremental filling methods may need to be retained for reasons such as densification, adaptation, thoroughness of cure, and bond formation. However, it is very difficult to prove that incrementalization needs to be retained because of the abatement of shrinkage effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cationic poly(N-isopropylacrylamide/4-vinylpyridine) [poly(NIPAM/4-VP)] polyelectrolyte co-polymer microgels have been prepared by surfactant free emulsion polymerization (SFEP) with varying compositions of 4-VP and NIPAM. The compositions of 4-VP were 15, 25, 35, 45, 55 wt.% relative to NIPAM. The temperature and pH responsive swelling–deswelling properties of these microgels have been investigated using dynamic light scattering (DLS) and electrophoretic mobility measurements. DLS results have shown that the particle diameter of the poly(NIPAM/4-VP) microgels decreases with increasing concentration (wt.%) of 4-VP over the 20–60 °C temperature range due to the increased amount of hydrophobic group. The particle size of all poly(NIPAM/4-VP) microgel series increases with decreasing pH, as the 4-VP units become more protonated at low pH below the pKa (5.39) of the monomer 4-VP. Electrophoretic mobility results have shown that electrophoretic mobility increases as the temperature/pH increases at a constant background ionic strength (1 × 10− 4 mol dm− 3 NaCl). These results are in good agreement with DLS results. The temperature/pH sensitivity of these microgels depends on the ratio of NIPAM/4-VP concentration in the co-polymer microgel systems. The combined temperature/pH responsiveness of these polyelectrolyte microgels can be used in applications where changes in particle size with small change in pH or temperature is of great consequence.