4 resultados para Catalytic cycles
em Greenwich Academic Literature Archive - UK
Resumo:
The recovery of platinum group metals (PGMs) from catalytic converters of spent exhaust systems is considered in this paper. To be cost-effective, recovery processes must be well over 90% efficient and so the optimisation of their operation is vital. Effective optimisation requires a sound understanding of the operation and the underlying process mechanisms. This paper focuses on pyrometallurgical recovery operations used and typified by the Johnson–Matthey process. Analysis of this process reveals that it cannot be simply explained by the gravity model that is normally assumed. The analysis reveals that the affinity of PGM particles for the melted collector metal is a key factor in the behaviour of the process. A rational explanation of the key issues that govern the process behaviour is proposed and shown to be consistent with available operational data. The results generated would be applicable to other similar processes.
Resumo:
A commercial pyrometallurgical process for the extraction of platinum-group metals (PGM) from a feedstock slag was analysed with the use of a model based on computational fluid dynamics. The results of the modelling indicate that recovery depends on the behaviour of the collector phase. A possible method is proposed for estimation of the rate at which PGM particles in slag are absorbed into an iron collector droplet that falls through it. Nanoscale modelling techniques (for particle migration or capture) are combined with a diffusion-controlled mass-transfer model to determine the iron collector droplet size needed for >95% PGM recovery in a typical process bath (70 mm deep) in a realistic time-scale (<1 h). The results show that an iron droplet having a diameter in the range 0.1–0.3 mm gives good recovery (>90%) within a reasonable time. This finding is compatible with published experimental data. Pyrometallurgical processes similar to that investigated should be applicable to other types of waste that contain low levels of potentially valuable metals.
Resumo:
The Symposium, “Towards the sustainable use of Europe’s forests”, with sub-title “Forest ecosystem and landscape research: scientific challenges and opportunities” lists three fundamental substantive areas of research that are involved: Forest management and practices, Ecosystem processes and functional ecology, and Environmental economics and sociology. This paper argues that there are essential catalytic elements missing! Without these elements there is great danger that the aimed-for world leadership in the forest sciences will not materialize. What are the missing elements? All the sciences, and in particular biology, environmental sciences, sociology, economics, and forestry have evolved so that they include good scientific methodology. Good methodology is imperative in both the design and analysis of research studies, the management of research data, and in the interpretation of research finding. The methodological disciplines of Statistics, Modelling and Informatics (“SMI”) are crucial elements in a proposed Centre of European Forest Science, and the full involvement of professionals in these methodological disciplines is needed if the research of the Centre is to be world-class. Distributed Virtual Institute (DVI) for Statistics, Modelling and Informatics in Forestry and the Environment (SMIFE) is a consortium with the aim of providing world-class methodological support and collaboration to European research in the areas of Forestry and the Environment. It is suggested that DVI: SMIFE should be a formal partner in the proposed Centre for European Forest Science.
Resumo:
It is shown that every connected, locally connected graph with the maximum vertex degree Δ(G)=5 and the minimum vertex degree δ(G)3 is fully cycle extendable. For Δ(G)4, all connected, locally connected graphs, including infinite ones, are explicitly described. The Hamilton Cycle problem for locally connected graphs with Δ(G)7 is shown to be NP-complete