4 resultados para CYCLIC OLIGOMERS
em Greenwich Academic Literature Archive - UK
Resumo:
Investigations of the vibrational spectra of cyclo(Gly-Gly), cyclo(L-Ala-L-Ala) and cyclo(t-Ala-Gly) are reported. Raman scattering and Fourier transform infrared (FTIR) spectra of solid-state and aqueous protonated samples, as well as their corresponding N-deuterated isotopomers, have been examined. In addition, density functional theory (DFT) (B3-LYP/cc-pVDZ) calculations of molecular structures and their associated vibrational modes were carried out. In each case, the calculated structures of lowest energy for the isolated gas-phase molecules have boat conformations. Assignments have been made for the observed Raman and FTIR vibrational bands of the cyclic di-amino acid peptides (CDAPs) examined. Raman polarization studies of aqueous phase samples are consistent with C-2 and C-1 symmetries for the six-membered rings of cyclo(L-Ala-L-Ala) and cydo(L-Ala-Gly), respectively. There is a good correlation between experimental and calculated vibrational bands for the three CDAPs. These data are in keeping with boat conformations for cydo(L-Ala-L-Ala) and cyclo(L-Ala-Gly) molecules, predicted by the ab initio calculations, in both the solid and aqueous solution states. However, Raman spectroscopic results might infer that cyclo(L-AlaGly) deviates only slightly from planarity in the solid state. The potential energy distributions of the amide I and II modes of a cis-peptide linkage are shown to be significantly different from those of the trans-peptides. For example, deuterium shifts have shown that the cis-amide I vibrations found in cyclo(Gly-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Ala-Gly) have larger N-H contributions compared to their trans-amide counterparts. Compared to trans-amide II vibrations, cis-amide II vibrations show a considerable decrease in N-H character.
Resumo:
B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.
Resumo:
Sugar amino acids and their oligomers, known as carbopeptoids, are commonly studied as foldamers. However, study of their conformational preference is often challenging when the adopted conformations are extended and/or disordered. This study is the first to explore the disordered nature of such carbopeptoids by utilizing a family of 2,5-trans carbopeptoids. An array of spectroscopic techniques has been used to investigate the conformational preference of these carbopeptoids. However, using this data alone it has not been possible to assign conformational preference as an ordered extended conformation or as a disordered family of closely related conformations. Computational methods need to be employed to achieve reliable interpretation of the spectroscopic data. Chirality, 2008. © 2008 Wiley-Liss, Inc.
Resumo:
The absorption spectra. cyclic voltammetry and spectroelectrochemistry of [Ni(II)DPTAA] and [Co(II)DPTAA] (DPTAA = 6,13-diphenyldibenzo[b,i][1,4,8,11] tetraaza[14]annulene) complexes in DMF are reported in detail. The ligand oxidation is observed for [Ni(II)DPTAA] at +0.70 V vs. SCE whereas Ni2(+/+) occurs at - 1.60 V. For [Co(II)DPTAA], a ligand oxidation redox couple is seen at +0.56 V while the Co2+/+ and Co2+/3+ redox couples appear at -1.21 and +0.24 V, respectively. All observed redox couples are assigned to reversible one-electron processes on account of peak separations and scan-rate dependency. These processes were further investigated by spectroelectrochemistry for [Co(II)DPTAA]. For [Co(II)DPTAA], axial ligation of pyridine was found to shift the Co2+/3+ redox couple more negative. while the ligand oxidation was shifted to more positive potentials. From a spectrophotometric titration of [Co(II)DPTAA] with pyridine an equilibrium constant, K-f, was determined for the binding of pyridine to [Co(II)DPTAA]. This was found to be 10.2 dm(3) mol(-1), slightly lower than that of [Co(II)TAA], indicating the influence of the phenyl groups. From this value and shifts in the Co2+/3+ redox couple upon ligation, an equilibrium constant for the binding of pyridine to [Co(III)DPTAA], K'(f), was found to be 5.06 x 10(6) dm(3) mol(-1). (c) 2007 Elsevier B.V. All rights reserved.