1 resultado para CONVERGENT SEQUENCES
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (76)
- Boston University Digital Common (8)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (37)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (158)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (27)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (13)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (70)
- Massachusetts Institute of Technology (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (106)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (38)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (43)
- Queensland University of Technology - ePrints Archive (61)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (76)
- School of Medicine, Washington University, United States (2)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (14)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (3)
- University of Michigan (16)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.