25 resultados para CONVECTION

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a constant uniform magnetic field on thermoelectric currents during dendritic solidification were investigated using a 2-dimensional enthalpy based numerical model. Using an approximation of the dendrite growing in free space it was found that the resulting Lorentz force generates a circulating flow influencing the solidification pattern. As the magnetic field strength increases it was found that secondary growth on the clockwise side of the primary arm of the dendrite was encouraged, while the anticlockwise side is suppressed due to a reduction in local free energy. The preferred direction of growth rotated in the clockwise sense under an anti-clockwise flow for both the binary alloy and pure material. The tip velociy is significantly increased compared to growth in stagnant flow. This is due to a small recirculation that follows the tip of the dendrite; bringing in colder liquid and lower concentrations of solute. The recirculation being not normally incident on the tip is most likely the cause for the rotation. Grain growth consisting of multiple seeds with the same anisotropy growing in the same plane, gives a competition to release latent heat resulting in stunted growth. The initial growth for each dendrite is very similar to the single seed cases indicating that dendrites must become before the thermoelectric interactions are significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk and interdendritic flow during solidification alters the microstructure development, potentially leading to the formation of defects. In this paper, a 3D numerical model is presented for the simulation of dendritic growth in the presence of fluid flow in both liquid and semi-solid zones during solidification. The dendritic growth was solved by the combination of a stochastic nucleation approach with a finite difference solution of the solute diffusion equation and. a projection method solution of the Navier-Stokes equations. The technique was applied first to simulate the growth of a single dendrite in 2D and 3D in an isothermal environment with forced fluid flow. Significant differences were found in the evolution of dendritic morphology when comparing the 2D and 3D results. In 3D the upstream arm has a faster growth velocity due to easier flow around the perpendicular arms. This also promotes secondary arm formation on the upstream arm. The effect of fluid flow on columnar dendritic growth and micro-segregation in constrained solidification conditions is then simulated. For constrained growth, 2D simulations lead to even greater inaccuracies as compared to 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that during alloy solidification, convection currents close to the so-lidification front have an influence on the structure of dendrites, the local solute concentration, the pattern of solid segregation, and eventually the microstructure of the casting and hence its mechanical properties. Controlled stirring of the melt in continuous casting or in ingot solidification is thought to have a beneficial effect. Free convection currents occur naturally due to temperature differences in the melt and for any given configuration, their strength is a function of the degree of superheat present. A more controlled forced convection current can be induced using electro-magnetic stirring. The authors have applied their Control-Volume based MHD method [1, 2] to the problem of tin solidification in an annular crucible with a water-cooled inner wall and a resistance heated outer one, for both free and forced convection situations and for various degrees of superheat. This problem was studied experimentally by Vives and Perry [3] who obtained temperature measurements, front positions and maps of electro-magnetic body force for a range of superheat values. The results of the mathematical model are compared critically against the experimental ones, in order to validate the model and also to demonstrate the usefulness of the coupled solution technique followed, as a predictive tool and a design aid. Figs 6, refs 19.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unstructured cell-centred finite volume method for modelling viscoelastic flow is presented. The method is applied to the flow through a planar channel and the 4:1 planar contraction for creeping flow of an Oldroyd-B fluid. The results are presented for a range of Weissenberg numbers. In the case of the planar channel results are compared with analytical solutions. For the 4:1 planar contraction benchmark problem the convection terms in the constitutive equations are approximated using both first and second order differencing schemes to compare the techniques and the effect of mesh refinement on the solution is investigated. This is the first time that a fully unstructured, cell-centredfinitevolume technique has been used to model the Oldroyd-B fluid for the test cases presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major percentage of the heat emitted from electronic packages can be extracted by air cooling whether by means of natural or forced convection. This flow of air throughout an electronic system and the heat extracted is highly dependable on the nature of turbulence present in the flow field. This paper will discuss results from an investigation into the accuracy of turbulence models to predict air cooling for electronic packages and systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two dimensional staggered unstructured discretisation scheme for the solution of fluid flow problems has been developed. This scheme stores and solves the velocity vector resolutes normal and parallel to each cell face and other scalar variables (pressure, temperature) are stored at cell centres. The coupled momentum; continuity and energy equations are solved, using the well known pressure correction algorithm SIMPLE. The method is tested for accuracy and convergence behaviour against standard cell-centre solutions in a number of benchmark problems: The Lid-Driven Cavity, Natural Convection in a Cavity and the Melting of Gallium in a rectangular domain.